The effect of the arrangement of corrugated composite on the R-curve of the sandwich structures with hybrid corrugated/foam core under mode I loading

[1]  Haim Abramovich,et al.  Influence of predetermined delaminations on buckling and postbuckling behavior of composite sandwich beams , 1991 .

[2]  Dan Zenkert,et al.  Strength of sandwich beams with interface debondings , 1991 .

[3]  L. Carlsson,et al.  Interfacial fracture of sandwich beams , 1993 .

[4]  L. Falk Foam core sandwich panels with interface disbonds , 1994 .

[5]  S. D. Papka,et al.  In-plane compressive response and crushing of honeycomb , 1994 .

[6]  D. Zenkert,et al.  Handbook of Sandwich Construction , 1997 .

[7]  Leif A. Carlsson,et al.  The Tilted Sandwich Debond (TSD) Specimen for Face/Core Interface Fracture Characterization , 1999 .

[8]  Shipsha,et al.  Interfacial fatigue crack growth in foam core sandwich structures , 1999 .

[9]  John Banhart,et al.  Metal foam evolution studied by synchrotron radioscopy , 2001 .

[10]  W. S. Johnson,et al.  Fracture and Fatigue Tests and Analysis of Composite Sandwich Structure , 2005 .

[11]  Bo Cerup Simonsen,et al.  Experimental and Numerical Study of Interface Crack Propagation in Foam-cored Sandwich Beams , 2007 .

[12]  A. Argüelles,et al.  Mixed mode fracture toughness: An empirical formulation for GI/GII determination in asymmetric DCB specimens , 2010 .

[13]  A. Argüelles,et al.  Theoretical and experimental analysis of carbon epoxy asymmetric dcb specimens to characterize mixed mode fracture toughness , 2010 .

[14]  Pierre Zahlen,et al.  Face sheet debonding in CFRP/PMI sandwich structures under quasi-static and fatigue loading considering residual thermal stress , 2011 .

[15]  George A. Kardomateas,et al.  Structural and Failure Mechanics of Sandwich Composites , 2011 .

[16]  A. Waas,et al.  Experimental determination of validated, critical interfacial modes I and II energy release rates in a composite sandwich panel☆ , 2012 .

[17]  M. Shokrieh,et al.  A Novel Method for Calculation of Strain Energy Release Rate of Asymmetric Double Cantilever Laminated Composite Beams , 2014, Applied Composite Materials.

[18]  Z. Aboura,et al.  Core–skin interfacial toughness of stitched sandwich structure , 2014 .

[19]  M. Heidari-Rarani,et al.  Effect of interface fiber angle on the R-curve behavior of E-glass/epoxy DCB specimens , 2016 .

[20]  W. Wang,et al.  A Methodology for Characterizing the Interfacial Fracture Toughness of Sandwich Structures using High Speed Infrared Thermography , 2016 .

[21]  Min Zhang,et al.  Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures , 2016 .

[22]  M. Tarfaoui,et al.  Determination of mode I & II strain energy release rates in composite foam core sandwiches. An experimental study of the composite foam core interfacial fracture resistance , 2017 .

[23]  Yan Zhang,et al.  Impact responses of sandwich panels with fibre metal laminate skins and aluminium foam core , 2017 .

[24]  Wentao He,et al.  The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures , 2017 .

[25]  P. Horst,et al.  Determination of the fracture toughness of debonded asymmetric sandwich beams with a thin-walled skin considering plastic deformation , 2017 .

[26]  J. Nairn,et al.  Balsa sandwich composite fracture study: Comparison of laminated to solid balsa core materials and debonding from thick balsa core materials , 2017 .

[27]  M. Shokrieh,et al.  Dependency of bridging traction of DCB composite specimen on interface fiber angle , 2017 .

[28]  De Xie,et al.  Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores , 2018 .

[29]  Peter Horst,et al.  Analysis and numerical prediction of the delamination behavior of debonded asymmetric sandwich shells with a thin-walled skin considering plastic deformation , 2018 .