Hypocoercivity for kinetic linear equations in bounded domains with general Maxwell boundary condition

We establish the convergence to the equilibrium for various linear collisional kinetic equations (including linearized Boltzmann and Landau equations) with physical local conservation laws in bounded domains with general Maxwell boundary condition. Our proof consists in establishing an hypocoercivity result for the associated operator, in other words, we exhibit a convenient Hilbert norm for which the associated operator is coercive in the orthogonal of the global conservation laws. Our approach allows us to treat general domains with all type of boundary conditions in a unified framework. In particular, our result includes the case of vanishing accommodation coefficient and thus the specific case of the specular reflection boundary condition.

[1]  Kurt Friedrichs,et al.  On the Boundary-Value Problems of the Theory of Elasticity and Korn's Inequality , 1947 .

[2]  Thomas Duyckaerts,et al.  Non-uniform stability for bounded semi-groups on Banach spaces , 2008 .

[3]  Tai-Ping Liu,et al.  Equilibrating Effects of Boundary and Collision in Rarefied Gases , 2014 .

[4]  M. Röckner,et al.  Weak Poincaré Inequalities and L2-Convergence Rates of Markov Semigroups , 2001 .

[5]  P. Lions,et al.  Compactness in Boltzmann’s equation via Fourier integral operators and applications. III , 1994 .

[6]  Stéphane Mischler,et al.  Kinetic equations with Maxwell boundary conditions , 2008, 0812.2389.

[7]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[8]  G. Lebeau,et al.  Stabilisation de l’équation des ondes par le bord , 1997 .

[9]  Robert M. Strain,et al.  Global Mild Solutions of the Landau and Non‐Cutoff Boltzmann Equations , 2019, Communications on Pure and Applied Mathematics.

[10]  Yan Guo,et al.  Almost Exponential Decay Near Maxwellian , 2006 .

[11]  S. Nonnenmacher,et al.  Sharp polynomial decay rates for the damped wave equation on the torus , 2012, 1210.6879.

[12]  Laure Saint-Raymond,et al.  From the Boltzmann equation to the Stokes‐Fourier system in a bounded domain , 2003 .

[13]  R. Dautray,et al.  Théorèmes de trace Lp pour des espaces de fonctions de la neutronique , 1984 .

[14]  Giuseppe Savaré,et al.  Regularity and perturbation results for mixed second order elliptic problems , 1997 .

[15]  F. Golse,et al.  Fluid dynamic limits of kinetic equations. I. Formal derivations , 1991 .

[16]  Robert M. Strain,et al.  Exponential Decay for Soft Potentials near Maxwellian , 2022 .

[17]  R. Caflisch Communications in Mathematical Physics © by Springer-Verlag 1980 The Boltzmann Equation with a Soft Potential II. Nonlinear, Spatially-Periodic , 2022 .

[18]  Yan Guo,et al.  Decay and Continuity of the Boltzmann Equation in Bounded Domains , 2008, 0801.1121.

[19]  Yuri Tomilov,et al.  Fine scales of decay of operator semigroups , 2013, 1305.5365.

[20]  F. Hérau,et al.  Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .

[21]  François Golse,et al.  The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels , 2004 .

[22]  Cl'ement Mouhot,et al.  Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus , 2006 .

[23]  Daniel Han-Kwan,et al.  Geometric Analysis of the Linear Boltzmann Equation I. Trend to Equilibrium , 2014, 1401.8227.

[24]  Jin Woo Jang,et al.  The Landau Equation with the Specular Reflection Boundary Condition , 2019, Archive for Rational Mechanics and Analysis.

[25]  Roland Schnaubelt,et al.  Polynomial stability of operator semigroups , 2006 .

[26]  P. Ciarlet,et al.  ANOTHER APPROACH TO LINEARIZED ELASTICITY AND A NEW PROOF OF KORN'S INEQUALITY , 2005 .

[27]  Chanwoo Kim,et al.  Decay of the Boltzmann Equation with the Specular Boundary Condition in Non-convex Cylindrical Domains , 2017, 1702.03475.

[28]  Franccois Golse,et al.  ON THE SPEED OF APPROACH TO EQUILIBRIUM FOR A COLLISIONLESS GAS , 2010, 1009.3004.

[29]  M. Hairer,et al.  Spectral Properties of Hypoelliptic Operators , 2002 .

[30]  Leif Arkeryd,et al.  On diffuse reflection at the boundary for the Boltzmann equation and related equations , 1994 .

[31]  Renjun Duan,et al.  Hypocoercivity of linear degenerately dissipative kinetic equations , 2009, 0912.1733.

[32]  Cédric Villani,et al.  On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation , 2005 .

[33]  F. Nier,et al.  Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .

[34]  Chanwoo Kim,et al.  The Boltzmann Equation with Specular Boundary Condition in Convex Domains , 2016, 1604.04342.

[35]  C. Bardos Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport , 1970 .

[36]  C. Mouhot,et al.  From Boltzmann to incompressible Navier–Stokes in Sobolev spaces with polynomial weight , 2014, Analysis and Applications.

[37]  J. Cañizo,et al.  Hypocoercivity of linear kinetic equations via Harris's Theorem , 2019, Kinetic & Related Models.

[38]  M. Briant Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions , 2015, 1507.03153.

[39]  Raffaele Esposito,et al.  Incompressible Navier-Stokes and Euler Limits of the Boltzmann Equation , 1989 .

[40]  Kleber Carrapatoso,et al.  Landau Equation for Very Soft and Coulomb Potentials Near Maxwellians , 2015, 1512.01638.

[41]  C. Mouhot,et al.  HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS , 2010, 1005.1495.

[42]  G. Lebeau,et al.  Equation des Ondes Amorties , 1996 .

[43]  Stéphane Mischler,et al.  On The Trace Problem For Solutions Of The Vlasov Equation , 1999 .

[44]  Yan Guo,et al.  Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions , 2015, 1511.01305.

[45]  Francesco Salvarani,et al.  Asymptotic behavior of degenerate linear transport equations , 2009 .

[46]  N. Burq Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .

[47]  R. J. DiPerna,et al.  Global solutions of Boltzmann's equation and the entropy inequality , 1991 .

[48]  Spatially Inhomogenous On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems : The linear Fokker-Planck equation , 2004 .

[49]  Chao-Jiang Xu,et al.  Incompressible Navier-Stokes-Fourier Limit from The Boltzmann Equation: Classical Solutions , 2014, 1401.6374.

[50]  Chuqi Cao The kinetic Fokker–Planck equation with weak confinement force , 2018, Communications in Mathematical Sciences.

[51]  Frédéric Hérau,et al.  Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation , 2005, Asymptot. Anal..

[52]  N. Masmoudi,et al.  Boundary Layers and Incompressible Navier‐Stokes‐Fourier Limit of the Boltzmann Equation in Bounded Domain I , 2015, 1510.02977.

[53]  I. Gallagher,et al.  On the convergence of smooth solutions from Boltzmann to Navier–Stokes , 2019, Annales Henri Lebesgue.

[54]  Stéphane Mischler,et al.  On the Initial Boundary Value Problem for the Vlasov–Poisson–Boltzmann System , 2000 .

[55]  Laure Saint-Raymond,et al.  Hydrodynamic Limits of the Boltzmann Equation , 2009 .

[56]  C. Mouhot,et al.  Hypocoercivity for kinetic equations with linear relaxation terms , 2008, 0810.3493.

[57]  Francesco Salvarani,et al.  On the Convergence to Equilibrium for Degenerate Transport Problems , 2013, Archive for Rational Mechanics and Analysis.

[58]  Yan Guo,et al.  The Vlasov‐Poisson‐Boltzmann system near Maxwellians , 2002 .

[59]  M. Costabel,et al.  Corner Singularities and Analytic Regularity for Linear Elliptic Systems. Part I: Smooth domains. , 2010 .

[60]  C. Villani,et al.  On a variant of Korn's inequality arising in statistical mechanics , 2002 .

[61]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[62]  Renjun Duan,et al.  Hypocoercivity for the Linear Boltzmann Equation with Confining Forces , 2011, 1112.1457.

[63]  O Kavian,et al.  The Fokker-Planck equation with subcritical confinement force , 2015, Journal de Mathématiques Pures et Appliquées.

[64]  M. Rachid Incompressible Navier-Stokes-Fourier limit from the Landau equation , 2020, Kinetic & Related Models.

[65]  François Golse,et al.  Fluid dynamic limits of kinetic equations II convergence proofs for the boltzmann equation , 1993 .

[66]  N. Lerner,et al.  Energy decay for a locally undamped wave equation , 2014, 1411.7271.

[67]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[68]  Claude Bardos,et al.  The Classical Incompressible Navier-Stokes Limit of the Boltzmann Equation(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics) , 1991 .

[69]  K. Hamdache Initial-Boundary value problems for the Boltzmann equation: Global existence of weak solutions , 1992 .

[70]  F. Boyer Trace theorems and spatial continuity properties for the solutions of the transport equation , 2005, Differential and Integral Equations.