Surface strengthening of Ti3SiC2 through magnetron sputtering of Mo and Zr and subsequent annealing

[1]  S. Urvoy,et al.  Processing and characterization of Zr3Si2 for nuclear applications , 2008 .

[2]  Yanchun Zhou,et al.  Surface Strengthening of Ti3SiC2 Through Magnetron Sputtering Cu and Subsequent Annealing , 2008 .

[3]  Xiong Yin,et al.  Microstructure and mechanical strength of diffusion-bonded Ti3SiC2/Ni joints , 2006 .

[4]  S. Kalidindi,et al.  Damage Mechanisms around Hardness Indentations in Ti3SiC2 , 2005 .

[5]  S. Kalidindi,et al.  Processing and Mechanical Properties of Ti3SiC2: II, Effect of Grain Size and Deformation Temperature , 2004 .

[6]  R. Khanna,et al.  Microstructure, mechanical properties and oxidation behavior of a multiphase (Mo,Cr)(Si,Al)2 intermetallic alloy–SiC composite processed by reaction hot pressing , 2004 .

[7]  Yanchun Zhou,et al.  Chemical reaction and stability of Ti3SiC2 in Cu during high-temperature processing of Cu/Ti3SiC2 composites , 2004 .

[8]  Gyeungho Kim,et al.  Microstructure and growth kinetics of the Mo5Si3 and Mo3Si layers in MoSi2/Mo diffusion couple , 2003 .

[9]  Litong Zhang,et al.  Mechanical properties and mechanism of damage tolerance for Ti3SiC2 , 2002 .

[10]  Yanchun Zhou,et al.  Cyclic-Oxidation Behavior of Ti3SiC2-Base Material at 1100°C , 2002 .

[11]  M. Li,et al.  High temperature oxidation behavior of Ti3SiC2-based material in air , 2001 .

[12]  M. Barsoum,et al.  Reaction of Al with Ti3SiC2 in the 800–1000°C temperature range , 2001 .

[13]  Yanchun Zhou,et al.  Crystallographic relations between Ti3SiC2 and TiC , 2000 .

[14]  Yanchun Zhou,et al.  Microstructure of Ti3SiC2 prepared by the in-situ hot pressing/solid-liquid reaction process , 2000 .

[15]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[16]  M. Barsoum,et al.  The topotactic transformation of Ti{sub 3}SiC{sub 2} into a partially ordered cubic Ti(C{sub 0.67}Si{sub 0.06}) phase by the diffusion of Si into molten cryolite , 1999 .

[17]  Di Zhang,et al.  Dense Ti3SiC2 prepared by reactive HIP , 1999 .

[18]  Yanchun Zhou,et al.  Ab initio calculation of titanium silicon carbide , 1999 .

[19]  Yanchun Zhou,et al.  Microstructure and mechanism of damage tolerance for Ti3SiC2 bulk ceramics , 1999 .

[20]  E. A. Payzant,et al.  Thermal properties of Ti3SiC2 , 1999 .

[21]  P. Peralta,et al.  Mo5Si3 single crystals: Physical properties and mechanical behavior , 1999 .

[22]  P. Peralta,et al.  Mo{sub 5}Si{sub 3} single crystals: Physical properties and mechanical behavior , 1998 .

[23]  Y. Zhou,et al.  In-situ hot pressing/solid-liquid reaction synthesis of dense titanium silicon carbide bulk ceramics , 1998 .

[24]  M. Barsoum,et al.  Diffusion kinetics of the carburization and silicidation of Ti3SiC2 , 1998 .

[25]  M. Barsoum,et al.  Oxidation of Ti3SiC2 in air , 1997 .

[26]  S. Kalidindi,et al.  Damage mechanisms around hardness indentations in Ti{sub 3}SiC{sub 2} , 1997 .

[27]  M. Barsoum,et al.  Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 , 1996 .

[28]  G. Frommeyer,et al.  Microstructures and Properties of the Refractory Compounds TiSi2 and ZrSi2 , 1992 .

[29]  A. Vasudévan,et al.  A comparative overview of molybdenum disilicide composites , 1992 .

[30]  James F. Shackelford,et al.  The CRC Materials Science And Engineering Handbook , 1991 .

[31]  S. Murarka,et al.  Transition Metal Silicides , 1983 .

[32]  K. Tu,et al.  Analysis of thin-film structures with nuclear backscattering and x-ray diffraction , 1974 .

[33]  S. Ermakov,et al.  THERMIONIC EMISSION OF METAL SILICIDES OF TRANSITION GROUPS ON THE PERIODIC SYSTEM OF ELEMENTS , 1962 .