Flops of any length, Gopakumar-Vafa invariants and 5d Higgs branches
暂无分享,去创建一个
[1] A. Sangiovanni,et al. Higgs Branches of rank-0 5d theories from M-theory on (Aj, Al) and (Ak, Dn) singularities , 2021, Journal of High Energy Physics.
[2] A. Sangiovanni,et al. Higgs branches of 5d rank-zero theories from geometry , 2021, Journal of High Energy Physics.
[3] Andr'es Collinucci,et al. Genus zero Gopakumar-Vafa invariants from open strings , 2021, Journal of High Energy Physics.
[4] D. Morrison,et al. High electric charges in M-theory from quiver varieties , 2019, Journal of High Energy Physics.
[5] J. Karmazyn. The length classification of threefold flops via noncommutative algebras , 2017, Advances in Mathematics.
[6] M. Fazzi,et al. Geometric engineering on flops of length two , 2018, 1802.00813.
[7] M. Wemyss,et al. Gopakumar–Vafa Invariants Do Not Determine Flops , 2017, 1707.01150.
[8] Thomas Deppisch,et al. E6Tensors: A Mathematica package for E6 Tensors , 2016, Comput. Phys. Commun..
[9] S. Yau,et al. 4d N = 2 SCFT and singularity theory Part I: Classification , 2015, 1510.01324.
[10] F. Piazza,et al. A simple E8 construction , 2012, 1207.3623.
[11] C. Vafa,et al. T-branes and monodromy , 2010, 1010.5780.
[12] F. Piazza,et al. $E_7$ groups from octonionic magic square , 2010, 1007.4758.
[13] E. Looijenga. Higher dimensional complex geometry , 2007 .
[14] C. Curto,et al. Threefold flops via matrix factorization , 2006, math/0611014.
[15] S. Katz,et al. Geometric Transitions and N=1 Quiver Theories , 2001, hep-th/0108120.
[16] E. Witten,et al. CFT's from Calabi–Yau four-folds , 1999, hep-th/9906070.
[17] C. Vafa,et al. BPS Structure of Argyres-Douglas Superconformal Theories , 1999, hep-th/9910182.
[18] R. Gopakumar,et al. On the Gauge Theory/Geometry Correspondence , 1998, hep-th/9811131.
[19] R. Gopakumar,et al. M-Theory and Topological Strings--II , 1998, hep-th/9812127.
[20] W. Mcgovern. Nilpotent Orbits In Semisimple Lie Algebra : An Introduction , 1993 .
[21] S. Katz,et al. Gorenstein Threefold Singularities with Small Resolutions via Invariant Theory for Weyl Groups , 1992, alg-geom/9202002.
[22] S. Okubo,et al. General indices of representations and Casimir invariants , 1984 .