Disordered holographic systems: Functional renormalization

We study quenched disorder in strongly correlated systems via holography, focusing on the thermodynamic effects of mild electric disorder. Disorder is introduced through a random potential which is assumed to self-average on macroscopic scales. Studying the flow of this distribution with energy scale leads us to develop a holographic functional renormalization scheme. We test this scheme by computing thermodynamic quantities and confirming that the Harris criterion for relevance, irrelevance or marginality of quenched disorder holds.