Electromigration failure in flip chip solder joints due to rapid dissolution of copper

An electromigration failure mechanism in flip chip solder joints is reported in this communication. The solder joints failed by a very rapid, asymmetrical, and localized dissolution of the Cu metallization on the cathode side. The average dissolution rate was about 1 μm/min. The dissolved Cu included not only the Cu under bump metallurgy but also the on-chip Cu conducting trace. From the location and geometry of the dissolved Cu, it can be concluded that current crowding plays a critical role in the rapid dissolution. The dissolved Cu atoms were driven to the anode side by electromigration, and a large amount of Cu 6 Sn 5 was formed there.