The Spectral Dimension of Generic Trees

Abstract We define generic ensembles of infinite trees. These are limits as N→∞ of ensembles of finite trees of fixed size N, defined in terms of a set of branching weights. Among these ensembles are those supported on trees with vertices of a uniformly bounded order. The associated probability measures are supported on trees with a single spine and Hausdorff dimension dh=2. Our main result is that the spectral dimension of the ensemble average is ds=4/3, and that the critical exponent of the mass, defined as the exponential decay rate of the two-point function along the spine, is 1/3.

[1]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[2]  Tokyo Institute of Technology,et al.  Quantum geometry and diffusion , 1998, hep-lat/9808027.

[3]  J. Jurkiewicz,et al.  Spectral dimension of the universe , 2005, hep-th/0505113.

[4]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2000 .

[5]  Martin T. Barlow,et al.  Random walk on the incipient infinite cluster on trees , 2005 .

[6]  On the fractal structure of two-dimensional quantum gravity , 1995, hep-lat/9507014.

[7]  H. Kesten Subdiffusive behavior of random walk on a random cluster , 1986 .

[8]  Bergfinnur Durhuus,et al.  Quantum Geometry: A Statistical Field Theory Approach , 1997 .

[9]  The spectral dimension of random trees , 2002, cond-mat/0206233.

[10]  Bergfinnur Durhuus,et al.  Probabilistic Aspects of Infinite Trees and Surfaces , 2003 .

[11]  W. Coffey,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2002 .

[12]  Bergfinnur Durhuus,et al.  Random walks on combs , 2006 .

[13]  D. Boulatov,et al.  The spectral dimension of 2D quantum gravity , 1998, hep-th/9801099.

[14]  S. Alexander,et al.  Density of states on fractals : « fractons » , 1982 .

[15]  J. Jurkiewicz,et al.  The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.

[16]  Thordur Jonsson,et al.  THE SPECTRAL DIMENSION OF THE BRANCHED POLYMER PHASE OF TWO-DIMENSIONAL QUANTUM GRAVITY , 1998 .

[17]  Martin T. Barlow,et al.  Random Walk on the Incipient Infinite Cluster for Oriented Percolation in High Dimensions , 2006, math/0608164.

[18]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[19]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[20]  Z. Burda,et al.  Statistical ensemble of scale-free random graphs. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Reconstructing the universe , 2005, hep-th/0505154.

[22]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.