The Spectral Dimension of Generic Trees
暂无分享,去创建一个
Bergfinnur Durhuus | Thordur Jonsson | T. Jónsson | B. Durhuus | J. Wheater | John F. Wheater | T. Jonsson
[1] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[2] Tokyo Institute of Technology,et al. Quantum geometry and diffusion , 1998, hep-lat/9808027.
[3] J. Jurkiewicz,et al. Spectral dimension of the universe , 2005, hep-th/0505113.
[4] S. Havlin,et al. Diffusion and Reactions in Fractals and Disordered Systems , 2000 .
[5] Martin T. Barlow,et al. Random walk on the incipient infinite cluster on trees , 2005 .
[6] On the fractal structure of two-dimensional quantum gravity , 1995, hep-lat/9507014.
[7] H. Kesten. Subdiffusive behavior of random walk on a random cluster , 1986 .
[8] Bergfinnur Durhuus,et al. Quantum Geometry: A Statistical Field Theory Approach , 1997 .
[9] The spectral dimension of random trees , 2002, cond-mat/0206233.
[10] Bergfinnur Durhuus,et al. Probabilistic Aspects of Infinite Trees and Surfaces , 2003 .
[11] W. Coffey,et al. Diffusion and Reactions in Fractals and Disordered Systems , 2002 .
[12] Bergfinnur Durhuus,et al. Random walks on combs , 2006 .
[13] D. Boulatov,et al. The spectral dimension of 2D quantum gravity , 1998, hep-th/9801099.
[14] S. Alexander,et al. Density of states on fractals : « fractons » , 1982 .
[15] J. Jurkiewicz,et al. The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.
[16] Thordur Jonsson,et al. THE SPECTRAL DIMENSION OF THE BRANCHED POLYMER PHASE OF TWO-DIMENSIONAL QUANTUM GRAVITY , 1998 .
[17] Martin T. Barlow,et al. Random Walk on the Incipient Infinite Cluster for Oriented Percolation in High Dimensions , 2006, math/0608164.
[18] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[19] T. E. Harris,et al. The Theory of Branching Processes. , 1963 .
[20] Z. Burda,et al. Statistical ensemble of scale-free random graphs. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[21] Reconstructing the universe , 2005, hep-th/0505154.
[22] I. Benjamini,et al. Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.