Subspace recycling accelerates the parametric macro‐modeling of MEMS

[1]  Peter Benner,et al.  A Robust Algorithm for Parametric Model Order Reduction Based on Implicit Moment Matching , 2014 .

[2]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[3]  Z. Bai,et al.  Parameterized model order reduction via a two-directional Arnoldi process , 2007, ICCAD 2007.

[4]  J. Phillips,et al.  Model reduction of time-varying linear systems using approximate multipoint Krylov-subspace projectors , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[5]  R. Morgan,et al.  Harmonic projection methods for large non-symmetric eigenvalue problems , 1998 .

[6]  Peter Benner,et al.  Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und InterpolationModel Reduction for Parametric Systems Using Balanced Truncation and Interpolation , 2009, Autom..

[7]  J. Korvink,et al.  Error indicators for fully automatic extraction of heat-transfer macromodels for MEMS , 2005 .

[8]  Boris Lohmann,et al.  Parametric Model Order Reduction by Matrix Interpolation , 2010, Autom..

[9]  Denis Lagrange,et al.  Final characterizations of MEMS-based pyrotechnical microthrusters , 2005 .

[10]  Zuochang Ye,et al.  Incremental Large-Scale Electrostatic Analysis , 2009, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  Frédéric Guyomarc'h,et al.  A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..

[12]  Michael Günther,et al.  Efficient extraction of thin-film thermal parameters from numerical models via parametric model order reduction , 2010 .

[13]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[14]  Jan G. Korvink,et al.  Review: Automatic Model Reduction for Transient Simulation of MEMS‐based Devices , 2002 .

[15]  Eric L. Miller,et al.  QMR-Based Projection Techniques for the Solution of Non-Hermitian Systems with Multiple Right-Hand Sides , 2001, SIAM J. Sci. Comput..

[16]  C.J.M. Lasance Two benchmarks to facilitate the study of compact thermal modeling phenomena , 2001 .

[17]  Ronald B. Morgan,et al.  GMRES WITH DEFLATED , 2008 .

[18]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[19]  Charbel Farhat,et al.  An Online Method for Interpolating Linear Parametric Reduced-Order Models , 2011, SIAM J. Sci. Comput..

[20]  Jacob K. White,et al.  Efficient AC and noise analysis of two-tone RF circuits , 1996, DAC '96.

[21]  Jacob K. White,et al.  A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[22]  Charbel Farhat,et al.  Fast frequency sweep computations using a multi‐point Padé‐based reconstruction method and an efficient iterative solver , 2007 .

[23]  Jan G. Korvink,et al.  Preserving the film coefficient as a parameter in the compact thermal model for fast electrothermal simulation , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[24]  Jan G. Korvink,et al.  Parametric model order reduction accelerated by subspace recycling , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[25]  Paul Fischer,et al.  PROJECTION TECHNIQUES FOR ITERATIVE SOLUTION OF Ax = b WITH SUCCESSIVE RIGHT-HAND SIDES , 1993 .

[26]  Zuochang Ye,et al.  Generalized Krylov recycling methods for solution of multiple related linear equation systems in electromagnetic analysis , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[27]  Boris Lohmann,et al.  Parametric Model Order Reduction by Matrix Interpolation (Parametrische Ordnungsreduktion mittels Matrixinterpolation). , 2010 .

[28]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[29]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[30]  T. Steinmetz,et al.  Multiple right-hand side techniques for the numerical simulation of quasistatic electric and magnetic fields , 2008 .

[31]  Lawrence T. Pileggi,et al.  Parameterized interconnect order reduction with explicit-and-implicit multi-parameter moment matching for inter/intra-die variations , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..