Recent Developments in Inverse Acoustic Scattering Theory

We survey some of the highlights of inverse scattering theory as it has developed over the last 15 years, with emphasis on uniqueness theorems and reconstruction algorithms for time harmonic acoustic waves. Included in our presentation are numerical experiments using real data and numerical examples of the use of inverse scattering methods to detect buried objects.

[1]  PETER MONK,et al.  A Linear Sampling Method for the Detection of Leukemia Using Microwaves II , 1999, SIAM J. Appl. Math..

[2]  Michele Piana,et al.  On uniqueness for anisotropic inhomogeneous inverse scattering problems , 1998 .

[3]  F. Natterer,et al.  A propagation-backpropagation method for ultrasound tomography , 1995 .

[4]  Peter Hähner,et al.  A Periodic Faddeev-Type Solution Operator , 1996 .

[5]  David Colton FAR-FIELD PATTERNS AND THE INVERSE SCATTERING PROBLEM FOR ACOUSTIC WAVES IN AN INHOMOGENEOUS MEDIUM , 1989 .

[6]  M. Klibanov,et al.  Iterative method for multi-dimensional inverse scattering problems at fixed frequencies , 1994 .

[7]  Francesco Zirilli,et al.  Three-Dimensional Inverse Obstacle Scattering for Time Harmonic Acoustic Waves: A Numerical Method , 1994, SIAM J. Sci. Comput..

[8]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[9]  Vladimir Rokhlin,et al.  On the inverse scattering problem for the Helmholtz equation in one dimension , 1992 .

[10]  F. Hettlich Frechet derivatives in inverse obstacle scattering , 1995 .

[11]  Roland Potthast,et al.  Stability estimates and reconstructions in inverse acoustic scattering using singular sources , 2000 .

[12]  William Rundell,et al.  A quasi-Newton method in inverse obstacle scattering , 1994 .

[13]  A. Tikhonov,et al.  Numerical Methods for the Solution of Ill-Posed Problems , 1995 .

[14]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[15]  A. Zinn,et al.  On an optimisation method for the full- and the limited-aperture problem in inverse acoustic scattering for a sound-soft obstacle , 1989 .

[16]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[17]  John Sylvester,et al.  Linear and Nonlinear Inverse Scattering , 1998, SIAM J. Appl. Math..

[18]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[19]  A. Roger,et al.  Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem , 1981 .

[20]  V. Edwards Scattering Theory , 1973, Nature.

[21]  Peter Hähner,et al.  On the uniqueness of the shape of a penetrable, anisotropic obstacle , 2000 .

[22]  Peter Monk,et al.  A Linear Sampling Method for the Detection of Leukemia Using Microwaves , 1998, SIAM J. Appl. Math..

[23]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[24]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[25]  David Colton,et al.  The simple method for solving the electromagnetic inverse scattering problem: the case of TE polarized waves , 1998 .

[26]  Weng Cho Chew,et al.  An iterative solution of the two‐dimensional electromagnetic inverse scattering problem , 1989, Int. J. Imaging Syst. Technol..

[27]  A. Kirsch The domain derivative and two applications in inverse scattering theory , 1993 .

[28]  T. D. Mast,et al.  Focusing and imaging using eigenfunctions of the scattering operator. , 1997, The Journal of the Acoustical Society of America.

[29]  David Colton,et al.  Eigenvalues of the Far Field Operator for the Helmholtz Equation in an Absorbing Medium , 1995, SIAM J. Appl. Math..

[30]  A. G. Ramm,et al.  Recovery of the potential from fixed-energy scattering data , 1988 .

[31]  R. Kress,et al.  Inverse scattering from an orthotropic medium , 1997 .

[32]  D. Colton,et al.  THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC ACOUSTIC WAVES IN AN INHOMOGENEOUS MEDIUM , 1988 .

[33]  R. W. McCahan,et al.  Special Session on Image Reconstruction Using Real Data , 1996 .

[34]  S. B. Childs,et al.  INVERSE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS. , 1968 .

[35]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[36]  David Colton,et al.  Uniqueness Theorems for the Inverse Problem of Acoustic Scattering , 1983 .

[37]  B. Cornuelle Acoustic Tomography , 1982, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Alexander G. Ramm,et al.  Multidimensional inverse scattering problems , 1999, DIPED - 99. Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. Proceedings of 4th International Seminar/Workshop (IEEE Cat. No.99TH8402).

[39]  Peter Monk,et al.  On a Class of Integral Equations of the First Kind in Inverse Scattering Theory , 1993, SIAM J. Appl. Math..

[40]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[41]  Rainer Kress,et al.  On uniqueness in inverse obstacle scattering , 1993 .

[42]  Roland Potthast,et al.  Frechet differentiability of boundary integral operators in inverse acoustic scattering , 1994 .

[43]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[44]  Andreas Kirsch,et al.  Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory , 1999 .

[45]  David Colton,et al.  Transmission eigenvalues and a problem of Hans Lewy , 2000 .

[46]  R. Carmichael CRC handbook of physical properties of rocks , 1982 .

[47]  Andrew N. Norris,et al.  A direct inverse scattering method for imaging obstacles with unknown surface conditions , 1998 .

[48]  R. Geroch Partial Differential Equations of Physics , 1996, gr-qc/9602055.

[49]  Derek B. Ingham,et al.  Boundary Integral Formulations for Inverse Analysis , 1997 .

[50]  R. Kanwal Linear Integral Equations , 1925, Nature.

[51]  R. Kress,et al.  Eigenvalues of the far field operator and inverse scattering theory , 1995 .

[52]  D. Colton,et al.  A simple method using Morozov's discrepancy principle for solving inverse scattering problems , 1997 .

[53]  C. Pichot,et al.  Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics , 1988 .

[54]  Peter Werner,et al.  Beugungsprobleme der mathematischen Akustik , 1963 .

[55]  Peter Monk,et al.  Scattering of Time-Harmonic Electromagnetic Waves by Anisotropic Inhomogeneous Scatterers or Impenetrable Obstacles , 2000, SIAM J. Numer. Anal..

[56]  J. B. Morris,et al.  Imaging of Unknown Targets From Measured Scattering Data , 1996, IEEE Antennas and Propagation Magazine.

[57]  V. Isakov Uniqueness and stability in multi-dimensional inverse problems , 1993 .

[58]  David Colton,et al.  The inverse electromagnetic scattering problem for an anisotropic medium , 1999 .

[59]  F. John Partial differential equations , 1967 .

[60]  Victor Isakov,et al.  On uniqueness in th invese transmission scattering problem , 1990 .

[61]  David Colton,et al.  Modified far field operators in inverse scattering theory , 1993 .

[62]  Bryan P. Rynne,et al.  The interior transmission problem and inverse scattering from inhomogeneous media , 1991 .

[63]  Roland Potthast,et al.  Electromagnetic Scattering from an Orthotropic Medium , 1999 .

[64]  Andreas Kirsch,et al.  Characterization of the shape of a scattering obstacle using the spectral data of the far field operator , 1998 .

[65]  Rainer Kress,et al.  On the Far Field in Obstacle Scattering , 1999, SIAM J. Appl. Math..

[66]  Roland Potthast,et al.  A point source method for inverse acoustic and electromagnetic obstacle scattering problems , 1998 .

[67]  Scott A. Mitchell,et al.  Quality Mesh Generation in Higher Dimensions , 2000, SIAM J. Comput..

[68]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[69]  P. M. Berg,et al.  A modified gradient method for two-dimensional problems in tomography , 1992 .

[70]  R. Kleinman,et al.  Image Reconstruction From Ipswich Data , 1996, IEEE Antennas and Propagation Magazine.

[71]  David Colton,et al.  Dense sets and far field patterns for acoustic waves in an inhomogeneous medium , 1988, Proceedings of the Edinburgh Mathematical Society.

[72]  Peter Monk,et al.  A Regularized Sampling Method for Solving Three-Dimensional Inverse Scattering Problems , 1999, SIAM J. Sci. Comput..