Global locomotion from local interaction in self-reconfigurable robots

We present a general distributed control algorithm for achieving locomotion of a self-reconfigurable robot. In this algorithm each module continuously performs a cyclic sequence of actions with a period . When a specified fraction of this period has elapsed a signal is sent to all child modules. Upon receiving this signal the child module resets its action sequence making it delayed compared to its parent. The algorithm is minimal and robust to loss of synchronization signals and change in the number of modules. We show in three different experiments that the algorithm can be used to implement a caterpillar, a sidewinder, and a rolling wheel gait in a real self-reconfigurable robot consisting of eight modules.

[1]  Eiichi Yoshida,et al.  Self-Repairing Mechanical Systems , 1999, Optics East.

[2]  Wei-Min Shen,et al.  Hormone-based control for self-reconfigurable robots , 2000, AGENTS '00.

[3]  Wei-Min Shen,et al.  Hormone-controlled metamorphic robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[4]  Mark Yim,et al.  PolyBot: a modular reconfigurable robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[5]  Wei-Min Shen,et al.  Reconnectable joints for self-reconfigurable robots , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[6]  Marsette Vona,et al.  A physical implementation of the self-reconfiguring crystalline robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[7]  Mark H. Yim,et al.  Locomotion With A Unit-Modular Reconfigurable Robot , 1995 .

[8]  Ernest J. H. Chang,et al.  An improved algorithm for decentralized extrema-finding in circular configurations of processes , 1979, CACM.

[9]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[10]  Peter M. Will,et al.  Autonomous and Self-Sufficient CONRO Modules for Reconfigurable Robots , 2000, DARS.

[11]  Gregory S. Chirikjian,et al.  Design And Implementation Of Metamorphic Robots , 1996 .

[12]  Wei-Min Shen,et al.  Hormones for Self-Reconfigurable Robots , 2000 .

[13]  Tad Hogg,et al.  Emergent structures in modular self-reconfigurable robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[14]  Gregory S. Chirikjian,et al.  A 'sidewinding' locomotion gait for hyper-redundant robots , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[15]  Pradeep K. Khosla,et al.  Mechatronic design of a modular self-reconfiguring robotic system , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).