Fuzzy plane geometry I: Points and lines

Abstract We introduce a comprehensive study of fuzzy geometry in this paper by first defining a fuzzy point and a fuzzy line in fuzzy plane geometry. We consider the fuzzy distance between fuzzy points and show it is a (weak) fuzzy metric. We study various definitions of a fuzzy line, develop their basic properties, and investigate parallel fuzzy lines.

[1]  Azriel Rosenfeld,et al.  The perimeter of a fuzzy set , 1985, Pattern Recognit..

[2]  J. Buckley,et al.  Solving systems of linear fuzzy equations , 1991 .

[3]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[4]  A. Rosenfeld,et al.  Fuzzy rectangles , 1990, Pattern Recognit. Lett..

[5]  Azriel Rosenfeld Fuzzy plane geometry: triangles , 1994, Pattern Recognit. Lett..

[6]  A. Rosenfeld The diameter of a fuzzy set , 1984 .

[7]  James J. Buckley,et al.  Solving fuzzy equations , 1992 .

[8]  A. Bogomolny On the perimeter and area of fuzzy sets , 1987 .

[9]  J. Buckley,et al.  Solving fuzzy equations: a new solution concept , 1991 .

[10]  J. J. Buckley,et al.  Fuzzy plane geometry II: Circles and polygons , 1997, Fuzzy Sets Syst..

[11]  R. Goetschel,et al.  Topological properties of fuzzy numbers , 1983 .

[12]  J. Bremont,et al.  Solving a system of fuzzy relation equations by using a hierarchical process , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.