Effect of crystal size and surface modification of ZSM-5 zeolites on conversion of ethanol to propylene

[1]  Wei Liu,et al.  Production of propylene from ethanol over ZSM-5 co-modified with zirconium and phosphorus , 2013, Reaction Kinetics, Mechanisms and Catalysis.

[2]  H. Vezin,et al.  Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role , 2012 .

[3]  隆夫 増田,et al.  n-ヘキサン接触分解による低級オレフィン選択合成におけるMFI型ゼオライトの結晶サイズとSi/Al比の影響 , 2012 .

[4]  T. Fujitani,et al.  Effects of added phosphorus on conversion of ethanol to propylene over ZSM-5 catalysts , 2012 .

[5]  T. Meng,et al.  The effect of crystal sizes of HZSM-5 zeolites in ethanol conversion to propylene , 2012 .

[6]  D. Nandan,et al.  Catalytic performance of nano crystalline H-ZSM-5 in ethanol to gasoline (ETG) reaction , 2012 .

[7]  J. Bilbao,et al.  Deactivation kinetics of a HZSM‐5 zeolite catalyst treated with alkali for the transformation of bio‐ethanol into hydrocarbons , 2012 .

[8]  Guangxing Li,et al.  Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance. , 2011, Journal of colloid and interface science.

[9]  Xinwen Guo,et al.  C2–C4 light olefins from bioethanol catalyzed by Ce-modified nanocrystalline HZSM-5 zeolite catalysts , 2011 .

[10]  T. Tago,et al.  Selective synthesis for light olefins from acetone over ZSM-5 zeolites with nano- and macro-crystal sizes , 2011 .

[11]  Jiangyin Lu,et al.  Fe-modified HZSM-5 catalysts for ethanol conversion into light olefins , 2011 .

[12]  Y. Ide,et al.  Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene , 2011 .

[13]  J. Bilbao,et al.  Kinetic modelling for the transformation of bioethanol into olefins on a hydrothermally stable Ni–HZSM-5 catalyst considering the deactivation by coke , 2011 .

[14]  F. R. Ribeiro,et al.  Deactivation and Regeneration of Zeolite Catalysts , 2011 .

[15]  J. Bilbao,et al.  Kinetic Model for the Transformation of Bioethanol into Olefins over a HZSM-5 Zeolite Treated with Alkali , 2010 .

[16]  P. Magnoux,et al.  Ethanol transformation over HFAU, HBEA and HMFI zeolites presenting similar Brønsted acidity , 2009 .

[17]  T. Fujitani,et al.  Synthesis of LEV zeolite by interzeolite conversion method and its catalytic performance in ethanol to olefins reaction , 2009 .

[18]  N. Nishiyama,et al.  Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites , 2008 .

[19]  Kunyuan Wang,et al.  Comparison of catalytic performances on nanoscale HZSM-5 and microscale HZSM-5 , 2008 .

[20]  K. Murata,et al.  Production of olefins from ethanol by Fe-supported zeolite catalysts , 2007 .

[21]  N. Nishiyama,et al.  Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals , 2006 .

[22]  P. Magnoux,et al.  Influence of reaction temperature and crystallite size on HBEA zeolite deactivation by coke , 2006 .

[23]  X. Zou,et al.  Synthesis and characterization of colloidal zoned MFI crystals , 2005 .

[24]  M. Garcia‐Valles,et al.  Synthesis of Na–X zeolites from tripolaceous deposits (Crotone, Italy) and volcanic zeolitised rocks (Vico volcano, Italy) , 2004 .

[25]  J. Bilbao,et al.  Catalyst deactivation by coke in the transformation of aqueous ethanol into hydrocarbons. Kinetic modeling and acidity deterioration of the catalyst , 2002 .

[26]  D. Bibby,et al.  Coke formation in zeolite ZSM-5 , 1986 .