Surrogate-Based Circuit Design Centering

Circuit design centering is one of the most important problems concerning the optimal design of circuits. Circuit design centering seeks nominal values of designable circuit parameters that maximize the probability of satisfying the design specifications (yield function). Design centering can be performed geometrically by finding the center of the feasible region (region in the designable parameter space where the design specifications are satisfied), or by maximizing the yield function explicitly. For all cases, the high expense of circuit simulations required obstructs the design centering process, especially for microwave circuits. To overcome this, computationally cheap surrogate-based models (e.g., space mapping, response surfaces, kriging, and neural networks) can be used for approximating the response functions or the yield function itself. In this chapter the design centering problem is formulated as an optimization problem, and the estimation of the yield function through several sampling techniques is explained. The difficulties facing the design centering process, especially for microwave circuits, are discussed, and the role of surrogate-based models in overcoming these difficulties is demonstrated. Special interest is devoted to space mapping surrogates and microwave circuit design centering. Some of the important surrogate-based circuit design centering approaches are reviewed with an overview of their theoretical bases. Tutorial and practical circuit examples are given to show the effectiveness of these approaches.

[1]  J. Bandler,et al.  Yield optimization for arbitrary statistical distributions: Part I-Theory , 1980 .

[2]  Abdel-Karim S.O. Hassan Normed Distances and Their Applications in Optimal Circuit Design , 2003 .

[3]  John W. Bandler,et al.  Circuit optimization: the state of the art , 1988 .

[4]  N. J. Elias Acceptance sampling: An efficient, accurate method for estimating and optimizing parametric yield , 1993, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '93.

[5]  Nathan Marcuvitz Waveguide Handbook , 1951 .

[6]  K. Singhal,et al.  Statistical design centering and tolerancing using parametric sampling , 1981 .

[7]  Katya Scheinberg,et al.  A derivative free optimization algorithm in practice , 1998 .

[8]  M. Powell Developments of NEWUOA for unconstrained minimization without derivatives , 2007 .

[9]  N. J. Elias Acceptance sampling: an efficient, accurate method for estimating and optimizing parametric yield /spl lsqb/IC manufacture/spl rsqb/ , 1994 .

[10]  Phillip E Allen,et al.  CMOS Analog Circuit Design , 1987 .

[11]  M. Bakr,et al.  Accelerated gradient-based optimization of planar circuits , 2005, IEEE Transactions on Antennas and Propagation.

[12]  Hany L. Abdel-Malek,et al.  The ellipsoidal technique for design centering and region approximation , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[13]  J.W. Bandler,et al.  Space mapping interpolating surrogates for highly optimized EM-based design of microwave devices , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[14]  John W. Bandler,et al.  The state of the art of microwave CAD: EM-based optimization and modeling , 2010 .

[15]  John W. Bandler,et al.  An Introduction to the Space Mapping Technique , 2001 .

[16]  Rob A. Rutenbar,et al.  Circuit Analysis and Optimization Driven by WorstCase Distances , 2002 .

[17]  Leszek J. Opalski,et al.  Design centering using an approximation to the constraint region , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Ezzeldin A. Soliman Rapid frequency sweep technique for MoM planar solvers , 2004 .

[19]  Michel Nakhla,et al.  A neural network modeling approach to circuit optimization and statistical design , 1995 .

[20]  Hany L. Abdel-Malek,et al.  A boundary gradient search technique and its applications in design centering , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  J.W. Bandler,et al.  Space mapping: the state of the art , 2004, IEEE Transactions on Microwave Theory and Techniques.

[22]  Kumaraswamy Ponnambalam,et al.  A unified approach to statistical design centering of integrated circuits with correlated parameters , 1999 .

[23]  John W. Bandler,et al.  Space mapping technique for electromagnetic optimization , 1994 .

[24]  J. Bandler,et al.  Computation of Sensitivities for Noncommensurate Networks , 1971 .

[25]  Timothy N. Trick,et al.  A Study of Variance Reduction Techniques for Estimating Circuit Yields , 1983, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[26]  M. J. D. Powell,et al.  UOBYQA: unconstrained optimization by quadratic approximation , 2002, Math. Program..

[27]  Sung-Mo Kang,et al.  Statistical Performance Modeling and Parametric Yield Estimation of MOS VLSI , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[28]  C. D. Boor,et al.  Computational aspects of polynomial interpolation in several variables , 1992 .

[29]  G. Hachtel,et al.  Computationally efficient yield estimation procedures based on simplicial approximation , 1978 .

[30]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[31]  E. D. Klerk,et al.  Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .

[32]  F. Giannessi,et al.  Nonlinear Optimization and Applications , 1996, Springer US.

[33]  Abdel-Karim S.O. Hassan,et al.  Statistical microwave circuit optimization via a non-derivative trust region approach and space mapping surrogates , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[34]  A. A. Rabie,et al.  Non-derivative design centering algorithm using trust region optimization and variance reduction , 2006 .

[35]  T. Sauer,et al.  On multivariate Lagrange interpolation , 1995 .

[36]  M. Bakr,et al.  An adjoint variable method for sensitivity calculations of multiport devices , 2004, IEEE Transactions on Microwave Theory and Techniques.

[37]  E. M. Jones,et al.  Microwave Filters, Impedance-Matching Networks, and Coupling Structures , 1980 .

[38]  R. Kielbasa,et al.  A study of stratified sampling in variance reduction techniques for parametric yield estimation , 1998 .

[39]  Helmut Graeb,et al.  Analog Design Centering and Sizing , 2007 .

[40]  J. Bandler,et al.  Optimal centering, tolerancing, and yield determination via updated approximations and cuts , 1978 .

[41]  John W. Bandler,et al.  FAST gradient based yield optimization of nonlinear circuits , 1990 .

[42]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[43]  M. A. Styblinski,et al.  Algorithms and Software Tools for IC Yield Optimization Based on Fundamental Fabrication Parameters , 1986, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[44]  Yu Zhang,et al.  Antenna optimization by using NEWUOA , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[45]  Kurt Antreich,et al.  Circuit analysis and optimization driven by worst-case distances , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[46]  E.A. Soliman,et al.  The Ellipsoidal Technique for Design Centering of Microwave Circuits Exploiting Space-Mapping Interpolating Surrogates , 2006, IEEE Transactions on Microwave Theory and Techniques.

[47]  Michael S. Eldred,et al.  OVERVIEW OF MODERN DESIGN OF EXPERIMENTS METHODS FOR COMPUTATIONAL SIMULATIONS , 2003 .

[48]  M. Powell The NEWUOA software for unconstrained optimization without derivatives , 2006 .

[49]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[50]  Abdel-Karim S.O. Hassan,et al.  Design centering and polyhedral region approximation via parallel-cuts ellipsoidal technique , 2004 .

[51]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[52]  Abdel-Karim S.O. Hassan,et al.  Statistical circuit design with the use of a modified ellipsoidal technique , 1997 .

[53]  S. Koziel,et al.  A Space-Mapping Framework for Engineering Optimization—Theory and Implementation , 2006, IEEE Transactions on Microwave Theory and Techniques.

[54]  P. Toint,et al.  An Algorithm using Quadratic Interpolation for Unconstrained Derivative Free Optimization , 1996 .

[55]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[56]  Sung-Mo Kang,et al.  Convexity-based algorithms for design centering , 1993, ICCAD '93.

[57]  Stephen P. Boyd,et al.  Applications of semidefinite programming , 1999 .

[58]  Jirí Vlach,et al.  Ellipsoidal method for design centering and yield estimation , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[59]  Kim-Chuan Toh,et al.  Primal-Dual Path-Following Algorithms for Determinant Maximization Problems With Linear Matrix Inequalities , 1999, Comput. Optim. Appl..

[60]  M. Roma,et al.  Large-Scale Nonlinear Optimization , 2006 .

[61]  Abdel-Karim S.O. Hassan,et al.  A new hybrid method for optimal circuit design using semi-definite programming , 2012 .

[62]  Timothy N. Trick,et al.  An Extrapolated Yield Approximation Technique for Use in Yield Maximization , 1984, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.