Orthogonal polynomials and cubature formulae on spheres and on simplices

Orthogonal polynomials on the standard simplex E in R are shown to be related to the spherical orthogonal polynomials on the unit sphere S in R that are invariant under the group Z2 x • • • x Z2. For a large class of measures on S, cubature formulae invariant under Z2 X • • • X Z2 are shown to be characterized by cubature formulae on S. Moreover, it also is shown that there is a correspondence between orthogonal polynomials and cubature formulae on S and those invariant on the unit ball B in R. The results provide a new approach to study orthogonal polynomials and cubature formulae on spheres and on simplices.

[1]  Yuan Xu Common zeros of polynomials in several variables and higher dimensional quadrature , 2020 .

[2]  Yuan Xu A class of bivariate orthogonal polynomials and cubature formula , 1994 .

[3]  H. Engels,et al.  Numerical Quadrature and Cubature , 1980 .

[4]  Ronald Cools,et al.  A survey of numerical cubature over triangles , 1993 .

[5]  H. M. Möller,et al.  Kubaturformeln mit minimaler Knotenzahl , 1976 .

[6]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[7]  Charles F. Dunkl,et al.  Orthogonal Polynomials with Symmetry of Order Three , 1984, Canadian Journal of Mathematics.

[8]  Hermann Engles,et al.  Numerical quadrature and cubature , 1980 .

[9]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[10]  Yuan Xu,et al.  ORTHOGONAL POLYNOMIALS AND CUBATURE FORMULAE ON SPHERES AND ON BALLS , 1998 .

[11]  Yuan Xu,et al.  On zeros of multivariate quasi-orthogonal polynomials and Gaussian cubature formulae , 1994 .

[12]  Charles F. Dunkl,et al.  Orthogonal polynomials on the sphere with octahedral symmetry , 1984 .

[13]  Patrick Keast,et al.  Fully Symmetric Integration Formulas for the Surface of the Sere in S Dimensions , 1983 .

[14]  T. Koornwinder Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .

[15]  Yuan Xu,et al.  Orthogonal Polynomials for a Family of Product Weight Functions on the Spheres , 1997, Canadian Journal of Mathematics.

[16]  W. Miller,et al.  Families of orthogonal and biorthogonal polynomials on the N -sphere , 1991 .

[17]  L. Collatz,et al.  Zur numerischen Auswertung mehrdimensionaler Integrale , 1958 .

[18]  James N. Lyness,et al.  Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .

[19]  H. Berens,et al.  On the Number of Nodes of Odd Degree Cubature Formulae for Integrals with Jacobi Weights on a Simplex , 1992 .