Harmony: static noise analysis of deep submicron digital integrated circuits

As technology scales into the deep submicron regime, noise immunity is becoming a metric of comparable importance to area, timing, and power for the analysis and design of very large scale integrated (VLSI) systems. A metric for noise immunity is defined, and a static noise analysis methodology based on this noise-stability metric is introduced to demonstrate how noise can be analyzed systematically on a full-chip basis using simulation-based transistor-level analysis. We then describe Harmony, a two-level (macro and global) hierarchical implementation of static noise analysis. At the macro level, simplified interconnect models and timing assumptions guide efficient analysis. The global level involves a careful combination of static noise analysis, static timing analysis, and detailed interconnect macromodels based on reduced-order modeling techniques. We describe how the interconnect macromodels are practically employed to perform coupling analysis and how timing constraints can be used to limit pessimism in the analysis.

[1]  Vivek Raghavan,et al.  AWESpice: a general tool for the accurate and efficient simulation of interconnect problems , 1992, [1992] Proceedings 29th ACM/IEEE Design Automation Conference.

[2]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[3]  J. Lohstroh Static and dynamic noise margins of logic circuits , 1979 .

[4]  H. H. Chen,et al.  Minimizing chip-level simultaneous switching noise for high-performance microprocessor design , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[5]  E. Seevinck,et al.  Static-noise margin analysis of MOS SRAM cells , 1987 .

[6]  J. Lohstroh,et al.  Worst-case static noise margin criteria for logic circuits and their mathematical equivalence , 1983, IEEE Journal of Solid-State Circuits.

[7]  Kenneth L. Shepard,et al.  Noise in deep submicron digital design , 1996, Proceedings of International Conference on Computer Aided Design.

[8]  Jacek M. Zurada,et al.  Dynamic noise margins of MOS logic gates , 1989, IEEE International Symposium on Circuits and Systems,.

[9]  Norman P. Jouppi Derivation of Signal Flow Direction in MOS VLSI , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[10]  Melvin A. Breuer,et al.  An integrated system for assigning signal flow directions to CMOS transistors , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  Lawrence T. Pileggi,et al.  Time-domain macromodels for VLSI interconnect analysis , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  R. Freund,et al.  Software for simplified Lanczos and QMR algorithms , 1995 .

[13]  Ronald A. Rohrer,et al.  Adaptively controlled explicit simulation , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Alberto L. Sangiovanni-Vincentelli,et al.  Digital sensitivity: predicting signal interaction using functional analysis , 1996, Proceedings of International Conference on Computer Aided Design.

[15]  Kenneth L. Shepard,et al.  Global Harmony: coupled noise analysis for full-chip RC interconnect networks , 1997, 1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[16]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[17]  Arvind Srinivasan,et al.  Verity - A formal verification program for custom CMOS circuits , 1995, IBM J. Res. Dev..

[18]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[19]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[20]  Daniel W. Dobberpuhl,et al.  The design and analysis of VLSI circuits , 1985 .

[21]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[22]  Kenneth L. Shepard,et al.  Design methodology for the S/390 Parallel Enterprise Server G4 microprocessors , 1997, IBM J. Res. Dev..

[23]  Shoichi Masui,et al.  Experimental results and modeling techniques for substrate noise in mixed-signal integrated circuits , 1993 .

[24]  Lawrence T. Pileggi,et al.  AWE macromodels of VLSI interconnect for circuit simulation , 1992, ICCAD.

[25]  Robert B. Hitchcock,et al.  Timing Analysis of Computer Hardware , 1982, IBM J. Res. Dev..

[26]  Roland W. Freund,et al.  Reduced-order modeling of large passive linear circuits by means of the SyPVL algorithm , 1996, Proceedings of International Conference on Computer Aided Design.

[27]  Kenneth L. Shepard,et al.  Conquering Noise in Deep-Submicron Digital ICs , 1998, IEEE Des. Test Comput..

[28]  Alberto L. Sangiovanni-Vincentelli,et al.  Techniques for crosstalk avoidance in the physical design of high-performance digital systems , 1994, ICCAD.

[29]  G.A. Katopis,et al.  Delta-I noise specification for a high-performance computing machine , 1985, Proceedings of the IEEE.

[30]  Malgorzata Marek-Sadowska,et al.  Crosstalk reduction for VLSI , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[31]  Alberto Sangiovanni-Vincentelli,et al.  Digital sensitivity: predicting signal interaction using functional analysis , 1996, ICCAD 1996.