Advancing dental implant surface technology--from micron- to nanotopography.

[1]  J. Ricci,et al.  Connective-tissue responses to defined biomaterial surfaces. I. Growth of rat fibroblast and bone marrow cell colonies on microgrooved substrates. , 2008, Journal of biomedical materials research. Part A.

[2]  J. Davies,et al.  Bone bonding at natural and biomaterial surfaces. , 2007, Biomaterials.

[3]  L. Cooper,et al.  The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. , 2007, Biomaterials.

[4]  J. Davies,et al.  The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces. , 2007, Biomaterials.

[5]  C. Wilkinson,et al.  The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. , 2007, Nature materials.

[6]  L. Meirelles,et al.  On nano size structures for enhanced bone formation , 2007 .

[7]  V. Varadan,et al.  Multifunctional Nanowire Bioscaffolds on Titanium , 2007 .

[8]  Tejal A Desai,et al.  Influence of engineered titania nanotubular surfaces on bone cells. , 2007, Biomaterials.

[9]  Yusuke Arima,et al.  Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. , 2007, Biomaterials.

[10]  R. Cortivo,et al.  In vitro culture of mesenchymal cells onto nanocrystalline hydroxyapatite-coated Ti13Nb13Zr alloy. , 2007, Journal of biomedical materials research. Part A.

[11]  P. Layrolle,et al.  Surface treatments of titanium dental implants for rapid osseointegration. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[12]  Lina Zhang,et al.  Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. , 2007, Macromolecular bioscience.

[13]  C. Giordano,et al.  In vitro and in vivo performance of a novel surface treatment to enhance osseointegration of endosseous implants. , 2007, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[14]  T. Albrektsson,et al.  Increased bone formation to unstable nano rough titanium implants. , 2007, Clinical oral implants research.

[15]  T. Testori,et al.  Influence of a nanometer-scale surface enhancement on de novo bone formation on titanium implants: a histomorphometric study in human maxillae. , 2007, The International journal of periodontics & restorative dentistry.

[16]  Yuhong Huang,et al.  Discrete deposition of hydroxyapatite nanoparticles on a titanium implant with predisposing substrate microtopography accelerated osseointegration , 2007 .

[17]  Benjamin Geiger,et al.  Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. , 2007, Biophysical journal.

[18]  J. Lindhe,et al.  Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. , 2007, Clinical oral implants research.

[19]  Joshua C. Hansen,et al.  The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. , 2007, Biomaterials.

[20]  T. Webster,et al.  Increased osteoblast adhesion on nanograined hydroxyapatite and tricalcium phosphate containing calcium titanate. , 2007, Journal of biomedical materials research. Part A.

[21]  T. Desai,et al.  Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces. , 2007, Journal of biomedical materials research. Part A.

[22]  A. Nanci,et al.  Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography. , 2007, Journal of biomedical materials research. Part A.

[23]  L. Tasker,et al.  Applications of nanotechnology in orthopaedics. , 2007, Clinical orthopaedics and related research.

[24]  D. Lickorish,et al.  A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: Evolution of scaffold design. , 2007, Biomaterials.

[25]  Andy H. Choi,et al.  Sol-gel production of bioactive nanocoatings for medical applications. Part II: current research and development. , 2007, Nanomedicine.

[26]  Nikolaj Gadegaard,et al.  Osteoprogenitor response to low-adhesion nanotopographies originally fabricated by electron beam lithography , 2007, Journal of materials science. Materials in medicine.

[27]  S. Caputi,et al.  Randomized, controlled histologic and histomorphometric evaluation of implants with nanometer-scale calcium phosphate added to the dual acid-etched surface in the human posterior maxilla. , 2007, Journal of periodontology.

[28]  D. Velten,et al.  Biomimetic implant coatings. , 2007, Biomolecular engineering.

[29]  Cato T Laurencin,et al.  Nanobiomaterial applications in orthopedics , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[30]  L. Tolstunov Dental Implant Success-Failure Analysis: A Concept of Implant Vulnerability , 2006, Implant dentistry.

[31]  Donald E Ingber,et al.  Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering. , 2006, Tissue engineering.

[32]  R. Oreffo,et al.  The interaction of human bone marrow cells with nanotopographical features in three dimensional constructs. , 2006, Journal of biomedical materials research. Part A.

[33]  B. Ratner,et al.  Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. , 2006, Biomaterials.

[34]  Andy H Choi,et al.  Sol-gel production of bioactive nanocoatings for medical applications. Part 1: an introduction. , 2006, Nanomedicine.

[35]  T. Webster,et al.  Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. , 2006, Journal of biomedical materials research. Part A.

[36]  Thomas J Webster,et al.  Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. , 2006, Journal of biomedical materials research. Part A.

[37]  Christopher J Murphy,et al.  The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. , 2006, Biomaterials.

[38]  T. Webster,et al.  The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro. , 2006, Biomaterials.

[39]  S. Tosatti,et al.  Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. , 2006, Clinical oral implants research.

[40]  I. Nishimura,et al.  Genes Differentially Expressed in Titanium Implant Healing , 2006, Journal of dental research.

[41]  J. Jansen,et al.  Implant Surface Roughness and Bone Healing: a Systematic Review , 2006, Journal of dental research.

[42]  D. Landolt,et al.  Osteoblast-like cells are sensitive to submicron-scale surface structure. , 2006, Clinical oral implants research.

[43]  Peter Thomsen,et al.  Advances in dental implant materials and tissue regeneration. , 2006, Periodontology 2000.

[44]  H. Jennissen,et al.  Bone apposition to titanium implants biocoated with recombinant human bone morphogenetic protein 2 (rhBMP-2). A pilot study in dogs , 2006, Clinical Oral Investigations.

[45]  K. Jandt,et al.  Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? , 2006, Colloids and surfaces. B, Biointerfaces.

[46]  Thomas J Webster,et al.  Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. , 2006, Biomaterials.

[47]  R. Advíncula,et al.  Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide. , 2006, Biomaterials.

[48]  D. Seabold,et al.  Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression. , 2006, The International journal of oral & maxillofacial implants.

[49]  C. Wilkinson,et al.  Osteoprogenitor response to defined topographies with nanoscale depths. , 2006, Biomaterials.

[50]  C. Murphy,et al.  Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design. , 2006, Tissue engineering.

[51]  A. Holmen,et al.  Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. , 2006, Biomaterials.

[52]  Hae-Won Kim,et al.  Hydroxyapatite-TiO2 Hybrid Coating on Ti Implants , 2006, Journal of Biomaterials Applications.

[53]  Besim Ben Nissan,et al.  The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. , 2005, Biomaterials.

[54]  T. Webster,et al.  Helical rosette nanotubes: a biomimetic coating for orthopedics? , 2005, Biomaterials.

[55]  Andreas Sewing,et al.  Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. , 2005, Clinical oral implants research.

[56]  Thomas J Webster,et al.  Increased osteoblast function on PLGA composites containing nanophase titania. , 2005, Journal of biomedical materials research. Part A.

[57]  Sungho Jin,et al.  Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. , 2005, Biomaterials.

[58]  R. Funk,et al.  Effects of Different Titanium Alloys and Nanosize Surface Patterning on Adhesion, Differentiation, and Orientation of Osteoblast-Like Cells , 2005, Cells Tissues Organs.

[59]  T. Webster,et al.  Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation , 2005 .

[60]  Jun Hu,et al.  Alignment of osteoblast-like cells and cell-produced collagen matrix induced by nanogrooves. , 2005, Tissue engineering.

[61]  Yong Wang,et al.  Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). , 2005, Biomaterials.

[62]  B. Boyan,et al.  Surface microtopography regulates osteointegration: the role of implant surface microtopography in osteointegration. , 2005, The Alpha omegan.

[63]  F Rupp,et al.  High surface energy enhances cell response to titanium substrate microstructure. , 2005, Journal of biomedical materials research. Part A.

[64]  C. D. Reyes,et al.  Bio-adhesive Surfaces to Promote Osteoblast Differentiation and Bone Formation , 2005, Journal of dental research.

[65]  James Runt,et al.  Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces , 2005, Journal of The Royal Society Interface.

[66]  T. Webster,et al.  Increased osteoblast functions on theta + delta nanofiber alumina. , 2005, Biomaterials.

[67]  P. Coelho,et al.  Evaluation of an IBAD thin-film process as an alternative method for surface incorporation of bioceramics on dental implants: a study in dogs. , 2005, Journal of applied oral science : revista FOB.

[68]  T. Webster,et al.  A Review of Nanotechnology for the Development of Better Orthopedic Implants , 2005 .

[69]  P. Tengvall,et al.  In vivo cytokine secretion and NF-kappaB activation around titanium and copper implants. , 2005, Biomaterials.

[70]  F. Mante,et al.  Oxidation of titanium, RGD peptide attachment, and matrix mineralization rat bone marrow stromal cells. , 2004, The Journal of oral implantology.

[71]  T. Albrektsson,et al.  Oral implant surfaces: Part 2--review focusing on clinical knowledge of different surfaces. , 2004, The International journal of prosthodontics.

[72]  A. Wennerberg,et al.  Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. , 2004, The International journal of oral & maxillofacial implants.

[73]  P. Wilshaw,et al.  Formation of highly adherent nano-porous alumina on Ti-based substrates: a novel bone implant coating , 2004, Journal of materials science. Materials in medicine.

[74]  Ann Wennerberg,et al.  Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. , 2004, The International journal of prosthodontics.

[75]  Tomoko Kasuga,et al.  Titanium oxide nanotubes for bone regeneration , 2004, Journal of materials science. Materials in medicine.

[76]  T. Webster,et al.  Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. , 2004, Biomaterials.

[77]  Thomas J Webster,et al.  Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. , 2004, Biomaterials.

[78]  W. Saltzman,et al.  Biomaterials with hierarchically defined micro- and nanoscale structure. , 2004, Biomaterials.

[79]  T. Webster,et al.  Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. , 2004, Journal of biomedical materials research. Part A.

[80]  N. Broggini,et al.  Enhanced Bone Apposition to a Chemically Modified SLA Titanium Surface , 2004, Journal of dental research.

[81]  Hyoun‐Ee Kim,et al.  Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. , 2004, Biomaterials.

[82]  U. Joos,et al.  Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. , 2004, Biomaterials.

[83]  Newell R Washburn,et al.  High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. , 2004, Biomaterials.

[84]  S. vandeVondele,et al.  RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces. , 2004, Journal of biomedical materials research. Part A.

[85]  Antonio Nanci,et al.  Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. , 2004, Biomaterials.

[86]  Thomas J Webster,et al.  Osteoblast function on nanophase alumina materials: Influence of chemistry, phase, and topography. , 2003, Journal of biomedical materials research. Part A.

[87]  T. Webster,et al.  Increased osteoblast adhesion on titanium-coated hydroxylapatite that forms CaTiO3. , 2003, Journal of biomedical materials research. Part A.

[88]  J. Pou,et al.  Micro- and nano-testing of calcium phosphate coatings produced by pulsed laser deposition. , 2003, Biomaterials.

[89]  F. Bäckhed,et al.  Nanoscale features influence epithelial cell morphology and cytokine production. , 2003, Biomaterials.

[90]  J. Davies,et al.  Understanding peri-implant endosseous healing. , 2003, Journal of dental education.

[91]  T. Testori,et al.  Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla. , 2003, Journal of periodontology.

[92]  C. Murphy,et al.  Epithelial contact guidance on well-defined micro- and nanostructured substrates , 2003, Journal of Cell Science.

[93]  R. L. Price,et al.  Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina , 2003, Medical and Biological Engineering and Computing.

[94]  D. Seabold,et al.  Implant Surface Roughness Affects Osteoblast Gene Expression , 2003, Journal of dental research.

[95]  N. Lang,et al.  De novo alveolar bone formation adjacent to endosseous implants. , 2003, Clinical oral implants research.

[96]  J. Ellingsen,et al.  Bio-Implant Interface: Improving Biomaterials and Tissue Reactions , 2003 .

[97]  I. Nishimura,et al.  Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes. , 2003, The International journal of oral & maxillofacial implants.

[98]  Thomas J Webster,et al.  Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. , 2002, Tissue engineering.

[99]  Martin A. Schwartz,et al.  Networks and crosstalk: integrin signalling spreads , 2002, Nature Cell Biology.

[100]  S. Hayakawa,et al.  Bioactive titania-gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. , 2002, Biomaterials.

[101]  H. E. Kim,et al.  Effects of ion beam-assisted deposition of hydroxyapatite on the osseointegration of endosseous implants in rabbit tibiae. , 2001, The International journal of oral & maxillofacial implants.

[102]  C. Gemmell,et al.  Platelet interactions with titanium: modulation of platelet activity by surface topography. , 2001, Biomaterials.

[103]  W. Tseng,et al.  Water-based sol-gel synthesis of hydroxyapatite: process development. , 2001, Biomaterials.

[104]  T. Webster,et al.  Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. , 2001, Tissue engineering.

[105]  S. Hayakawa,et al.  A comparative study of in vitro apatite deposition on heat-, H(2)O(2)-, and NaOH-treated titanium surfaces. , 2001, Journal of Biomedical Materials Research.

[106]  H. M. Kim,et al.  Bioactive macroporous titanium surface layer on titanium substrate. , 2000, Journal of biomedical materials research.

[107]  L. Schlapbach,et al.  Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application. , 2000, Biomaterials.

[108]  T. Webster,et al.  Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. , 2000, Journal of biomedical materials research.

[109]  T. Webster,et al.  Enhanced functions of osteoblasts on nanophase ceramics. , 2000, Biomaterials.

[110]  J. Fiorellini,et al.  A retrospective study of dental implants in diabetic patients. , 2000, The International journal of periodontics & restorative dentistry.

[111]  D. Cochran,et al.  A comparison of endosseous dental implant surfaces. , 1999, Journal of periodontology.

[112]  D. Puleo,et al.  Understanding and controlling the bone-implant interface. , 1999, Biomaterials.

[113]  Milan Mrksich,et al.  Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates , 1999, In Vitro Cellular & Developmental Biology - Animal.

[114]  S. Hansson,et al.  The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model. , 1999, Journal of biomechanics.

[115]  T. Webster,et al.  Osteoblast adhesion on nanophase ceramics. , 1999, Biomaterials.

[116]  L. Bonewald,et al.  Implant Surface Characteristics Modulate Differentiation Behavior of Cells in the Osteoblastic Lineage , 1999, Advances in dental research.

[117]  C J Goodacre,et al.  Clinical complications of osseointegrated implants. , 1999, The Journal of prosthetic dentistry.

[118]  L F Cooper,et al.  Biologic determinants of bone formation for osseointegration: clues for future clinical improvements. , 1998, The Journal of prosthetic dentistry.

[119]  M. McKee,et al.  Chemical modification of titanium surfaces for covalent attachment of biological molecules. , 1998, Journal of biomedical materials research.

[120]  L. Cooper,et al.  Cell and matrix reactions at titanium implants in surgically prepared rat tibiae. , 1997, The International journal of oral & maxillofacial implants.

[121]  T. Albrektsson,et al.  A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. , 1997, The International journal of oral & maxillofacial implants.

[122]  K. Gonsalves,et al.  Ftir study of a nanostructured aluminum nitride powder surface: Determination of the acidic/basic sites by CO, CO2 and acetic acid adsorptions , 1997 .

[123]  C. Bain,et al.  Smoking and implant failure--benefits of a smoking cessation protocol. , 1996, The International journal of oral & maxillofacial implants.

[124]  L. C. Jonghe,et al.  Sintering of Nanophase Γ-Al₂O₃ Powder , 1996 .

[125]  Shawn Decker,et al.  Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry , 1996 .

[126]  R. Tuan,et al.  Regulation of human osteoblast integrin expression by orthopedic implant materials. , 1996, Bone.

[127]  E. Hunziker,et al.  Effect of surface topology on the osseointegration of implant materials in trabecular bone. , 1995, Journal of biomedical materials research.

[128]  B. Boyan,et al.  Modulation of matrix vesicle enzyme activity and phosphatidylserine content by ceramic implant materials during endosteal bone healing , 1992, Calcified Tissue International.

[129]  D Buser,et al.  Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. , 1991, Journal of biomedical materials research.

[130]  L. Sennerby,et al.  [Direct bone anchorage of oral implants: clinical and experimental considerations of the concept of osseointegration]. , 1990, Parodontologie.

[131]  E. Hjørting-Hansen,et al.  Clinical and radiographic evaluation of submerged and nonsubmerged implants in monkeys. , 1990, The International journal of prosthodontics.

[132]  A Schmitt,et al.  The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part III: Problems and complications encountered. , 1990, The Journal of prosthetic dentistry.

[133]  Tomas Albrektsson,et al.  Osseointegrated Oral implants , 1988 .

[134]  B. Kasemo Biocompatibility of titanium implants: surface science aspects. , 1983, The Journal of prosthetic dentistry.

[135]  H. Hansson,et al.  Electron microscopic analysis of the bone-titanium interface. , 1983, Acta orthopaedica Scandinavica.

[136]  Joshua C. Hansen,et al.  Effect of surface nanoscale topography on elastic modulus of individual osteoblastic cells as determined by atomic force microscopy. , 2007, Journal of biomechanics.

[137]  B. Boyan,et al.  Integrin beta1 silencing in osteoblasts alters substrate-dependent responses to 1,25-dihydroxy vitamin D3. , 2006, Biomaterials.

[138]  Rena Bizios,et al.  Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. , 2005, Journal of biomedical materials research. Part A.

[139]  In-Seop Lee,et al.  The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. , 2005, The International journal of oral & maxillofacial implants.

[140]  A. Hart Filapodial Sensing of Nanotopography in Osteoprogenitor Cells , 2005 .

[141]  H. Weber,et al.  Immediate restoration and loading of dental implants: clinical considerations and protocols. , 2004, The International journal of oral & maxillofacial implants.

[142]  Takashi Nakamura,et al.  Apatite formation on zirconium metal treated with aqueous NaOH. , 2002, Biomaterials.

[143]  Sandra Downes,et al.  Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. , 2002, Journal of biomedical materials research.

[144]  J. Ellingsen,et al.  Increasing Biocompatibility by Chemical Modification of Titanium Surfaces , 2002 .

[145]  L. Cooper,et al.  Evaluation of a predictive model for implant surface topography effects on early osseointegration in the rat tibia model. , 2001, The Journal of prosthetic dentistry.

[146]  H. Alexander,et al.  Bone response to laser microtextured surfaces , 2000 .

[147]  J. Klein-Nulend,et al.  MECHANOTRANSDUCTION IN BONE : ROLE OF THE LACUNOCANALICULAR NETWORK , 1999 .

[148]  B. Boyan,et al.  Response of bone and cartilage cells to biomaterials in vivo and in vitro. , 1993, The Journal of oral implantology.

[149]  T Albrektsson,et al.  A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. , 1991, Clinical oral implants research.

[150]  R. Jaffin,et al.  The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. , 1991, Journal of periodontology.

[151]  P. Branemark,et al.  Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. , 1990, The International journal of oral & maxillofacial implants.

[152]  K. Burridge,et al.  The distribution of distinct integrins in focal contacts is determined by the substratum composition. , 1989, Journal of cell science.

[153]  D. Brunette,et al.  The effects of implant surface topography on the behavior of cells. , 1988, The International journal of oral & maxillofacial implants.

[154]  P I Brånemark,et al.  A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. , 1981, International journal of oral surgery.

[155]  J Lindström,et al.  Intra-osseous anchorage of dental prostheses. I. Experimental studies. , 1969, Scandinavian journal of plastic and reconstructive surgery.