Controlled degradation and crosslinking of polypropylene induced by gamma radiation and acetylene

[1]  Adriane N. Irwin,et al.  Radiation–oxidation mechanisms: Volatile organic degradation products from polypropylene having selective C-13 labeling studied by GC/MS , 2008 .

[2]  J. R. White,et al.  Effect of stabilizer on scission and crosslinking rate changes during photo-oxidation of polypropylene , 2007 .

[3]  D. F. Parra,et al.  Review on the production process and uses of controlled rheology polypropylene—Gamma radiation versus electron beam processing , 2007 .

[4]  Wei Yu,et al.  The preparation and rheology characterization of long chain branching polypropylene , 2006 .

[5]  M. Yamaguchi,et al.  Impact of processing history on rheological properties for branched polypropylene , 2006 .

[6]  H. Münstedt,et al.  Long-Chain Branched Polypropylenes by Electron Beam Irradiation and Their Rheological Properties , 2004 .

[7]  A. Gotsis,et al.  Effect of long branches on the rheology of polypropylene , 2004 .

[8]  Harumi Otaguro,et al.  Comportamento do polipropileno em presença de monômeros trifuncionais no estado fundido e sua influência na morfologia , 2004 .

[9]  D. Han,et al.  Crosslinking and degradation of polypropylene by electron beam irradiation in the presence of trifunctional monomers , 2004 .

[10]  K. K. Dwivedi,et al.  Spectroscopic and thermal studies of gamma irradiated polypropylene polymer , 2003 .

[11]  R. Mülhaupt,et al.  Rheological evidence of modifications of polypropylene by β-irradiation , 2003 .

[12]  J. Martínez-Salazar,et al.  Effect of long chain branching on linear-viscoelastic melt properties of polyolefins , 2002 .

[13]  D. Graebling Synthesis of Branched Polypropylene by a Reactive Extrusion Process , 2002 .

[14]  A. N. F. Mendes,et al.  Temperature rising elution fractionation, infra red and rheology study on gamma irradiated HMSPP , 2002 .

[15]  L. M. Sherman The new polypropylenes they've got more of everything , 2002 .

[16]  A. Gotsis,et al.  Peroxydicarbonate modification of polypropylene and extensional flow properties , 2001 .

[17]  R. Clough High-energy radiation and polymers: A review of commercial processes and emerging applications , 2001 .

[18]  M. Sugimoto,et al.  Melt rheology of polypropylene containing small amounts of high molecular weight chain. I. Shear flow , 2001 .

[19]  M. Sugimoto,et al.  Melt Rheology of Polypropylene Containing Small Amounts of High-Molecular-Weight Chain. 2. Uniaxial and Biaxial Extensional Flow , 2001 .

[20]  G. Spadaro,et al.  Influence of the irradiation parameters on the molecular modifications of an isotactic polypropylene gamma-irradiated under vacuum , 2000 .

[21]  Seung-ho Park,et al.  Effect of chain structure of polypropylenes on the melt flow behavior , 2000 .

[22]  M. Sugimoto,et al.  Effect of chain structure on the melt rheology of modified polypropylene , 1999 .

[23]  M. Sugimoto,et al.  Mechanism of toughening for polypropylene blended with ethylene–propylene–diene rubber following selective crosslinking , 1996 .

[24]  C. Tzoganakis,et al.  Chemical modification of polypropylene with peroxide/pentaerythritol triacrylate by reactive extrusion , 1996 .

[25]  K. Koyama,et al.  High‐melt‐strength polypropylene with electron beam irradiation in the presence of polyfunctional monomers , 1996 .

[26]  M. Wagner,et al.  Rheotens‐mastercurves and drawability of polymer melts , 1996 .

[27]  I. Chodák Properties of crosslinked polyolefin-based materials , 1995 .

[28]  I. M. Ward,et al.  Radiation‐induced crosslinking of polyethylene in the presence of acetylene: A gel fraction, UV‐visible, and ESR spectroscopy study , 1993 .

[29]  T. Sawasaki,et al.  Radiation crosslinking of polypropylene , 1985 .

[30]  R. Samuels Quantitative structural characterization of the melting behavior of isotactic polypropylene , 1975 .