Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode

A mesoscopic methylammonium lead iodide (CH3NH3PbI3) perovskite/TiO2 heterojunction solar cell is developed with low-cost carbon counter electrode (CE) and full printable process. With carbon black/spheroidal graphite CE, this mesoscopic heterojunction solar cell presents high stability and power conversion efficiency of 6.64%, which is higher than that of the flaky graphite based device and comparable to the conventional Au version.

[1]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[2]  Wei Lin Leong,et al.  Differential Resistance Analysis of Charge Carrier Losses in Organic Bulk Heterojunction Solar Cells: Observing the Transition from Bimolecular to Trap‐Assisted Recombination and Quantifying the Order of Recombination , 2011 .

[3]  Guanghui Liu,et al.  A mesoscopic platinized graphite/carbon black counter electrode for a highly efficient monolithic dye-sensitized solar cell , 2012 .

[4]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[5]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[6]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[7]  M. Ikegami,et al.  Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media , 2012 .

[8]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[9]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[10]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[11]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[12]  Zhipeng Huo,et al.  Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material. , 2013, Chemical communications.

[13]  Michael Grätzel,et al.  Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder , 1996 .

[14]  Guanghui Liu,et al.  An efficient thiolate/disulfide redox couple based dye-sensitized solar cell with a graphene modified mesoscopic carbon counter electrode , 2013 .

[15]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[16]  Henry J. Snaith,et al.  The renaissance of dye-sensitized solar cells , 2012, Nature Photonics.

[17]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[18]  Michael M. Lee,et al.  Low-Temperature Processed Mesosuperstructured to Thin-Film Perovskite Solar Cells , 2013 .

[19]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[20]  Colin M. MacRae,et al.  A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode , 2009 .

[21]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[22]  E. Sargent,et al.  Colloidal quantum dot solar cells , 2012, Nature Photonics.

[23]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[24]  C. Grätzel,et al.  Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters , 2013 .

[25]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[26]  C. Zhong,et al.  Efficient Dye‐Sensitized Solar Cells with Potential‐Tunable Organic Sulfide Mediators and Graphene‐Modified Carbon Counter Electrodes , 2013 .

[27]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[28]  B. Clemens,et al.  Investigating the Role of Grain Boundaries in CZTS and CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy , 2012, Advanced materials.

[29]  W. Liu,et al.  A Hybrid Poly(ethylene oxide)/ Poly(vinylidene fluoride)/TiO2 Nanoparticle Solid‐State Redox Electrolyte for Dye‐Sensitized Nanocrystalline Solar Cells , 2005 .

[30]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.