Factorization strategies for third-order tensors
暂无分享,去创建一个
[1] Mansoor Rezghi,et al. Diagonalization of Tensors with Circulant Structure , 2011 .
[2] C. Martin,et al. The rank of a 2 × 2 × 2 tensor , 2011 .
[3] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[4] Karen S. Braman. Third-Order Tensors as Linear Operators on a Space of Matrices , 2010 .
[5] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[6] Pierre Comon,et al. Subtracting a best rank-1 approximation may increase tensor rank , 2009, 2009 17th European Signal Processing Conference.
[7] Eugene E. Tyrtyshnikov,et al. Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time , 2008, SIAM J. Matrix Anal. Appl..
[8] Michael P. Friedlander,et al. Computing non-negative tensor factorizations , 2008, Optim. Methods Softw..
[9] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[10] M. Kilmer,et al. A Third-order Generalization of the Matrix Svd as a Product of Third-order Tensors , 2008 .
[11] Berkant Savas,et al. Handwritten digit classification using higher order singular value decomposition , 2007, Pattern Recognit..
[12] Tamara G. Kolda,et al. Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .
[13] T. Kolda. Multilinear operators for higher-order decompositions , 2006 .
[14] P. Hansen,et al. Exploiting Residual Information in the Parameter Choice for Discrete Ill-Posed Problems , 2006 .
[15] Misha Elena Kilmer,et al. Kronecker product approximation for preconditioning in three-dimensional imaging applications , 2006, IEEE Transactions on Image Processing.
[16] M. Friedlander,et al. Computing non-negative tensor factorizations , 2008, Optim. Methods Softw..
[17] Tamara G. Kolda,et al. Higher-order Web link analysis using multilinear algebra , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).
[18] David E. Booth,et al. Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.
[19] Bülent Yener,et al. Modeling and Multiway Analysis of Chatroom Tensors , 2005, ISI.
[20] C. F. Beckmann,et al. Tensorial extensions of independent component analysis for multisubject FMRI analysis , 2005, NeuroImage.
[21] Fumikazu Miwakeichi,et al. Decomposing EEG data into space–time–frequency components using Parallel Factor Analysis , 2004, NeuroImage.
[22] Fumikazu Miwakeichi,et al. Concurrent EEG/fMRI analysis by multiway Partial Least Squares , 2004, NeuroImage.
[23] James G. Nagy,et al. Iterative Methods for Image Deblurring: A Matlab Object-Oriented Approach , 2004, Numerical Algorithms.
[24] Demetri Terzopoulos,et al. Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[25] Demetri Terzopoulos,et al. Multilinear image analysis for facial recognition , 2002, Object recognition supported by user interaction for service robots.
[26] Demetri Terzopoulos,et al. Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.
[27] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[28] M. Davies,et al. Mathematics in signal processing V , 2002 .
[29] Gene H. Golub,et al. Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..
[30] Nikos D. Sidiropoulos,et al. Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..
[31] H. Kiers. Towards a standardized notation and terminology in multiway analysis , 2000 .
[32] P. Paatero. Construction and analysis of degenerate PARAFAC models , 2000 .
[33] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[34] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[35] Misha Elena Kilmer,et al. Cauchy-like Preconditioners for Two-Dimensional Ill-Posed Problems , 1999, SIAM J. Matrix Anal. Appl..
[36] R. Bro,et al. A fast non‐negativity‐constrained least squares algorithm , 1997 .
[37] Raymond H. Chan,et al. Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..
[38] L. Lathauwer,et al. From Matrix to Tensor : Multilinear Algebra and Signal Processing , 1996 .
[39] J. Berge,et al. Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays , 1991 .
[40] J. Kruskal. Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .
[41] J. Denis,et al. Orthogonal tensor decomposition of 3-way tables , 1989 .
[42] A. Agresti,et al. Multiway Data Analysis , 1989 .
[43] Pieter M. Kroonenberg,et al. Three-mode principal component analysis : theory and applications , 1983 .
[44] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[45] J. JáJá. Optimal Evaluation of Pairs of Bilinear Forms , 1979, SIAM J. Comput..
[46] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[47] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[48] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.