Candida albicans VPS1 contributes to protease secretion, filamentation, and biofilm formation.

[1]  Samuel A. Lee,et al.  A functional analysis of the Candida albicans homolog of Saccharomyces cerevisiae VPS4. , 2007, FEMS yeast research.

[2]  M. Pfaller,et al.  Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem , 2007, Clinical Microbiology Reviews.

[3]  C. Gaillardin,et al.  Deletions of the Endocytic Components VPS28 and VPS32 in Candida albicans Lead to Echinocandin and Azole Hypersensitivity , 2006, Antimicrobial Agents and Chemotherapy.

[4]  A. Mitchell,et al.  Genetics and genomics of Candida albicans biofilm formation , 2006, Cellular microbiology.

[5]  C. Nombela,et al.  The MAP kinase signal transduction network in Candida albicans. , 2006, Microbiology.

[6]  Alistair J. P. Brown,et al.  Outer Chain N-Glycans Are Required for Cell Wall Integrity and Virulence of Candida albicans* , 2006, Journal of Biological Chemistry.

[7]  J. Ruiz-Herrera,et al.  Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. , 2006, FEMS yeast research.

[8]  F. Dromer,et al.  Deletions of Endocytic Components VPS28 and VPS32 Affect Growth at Alkaline pH and Virulence through both RIM101-Dependent and RIM101-Independent Pathways in Candida albicans , 2005, Infection and Immunity.

[9]  M. Schaller,et al.  Hydrolytic enzymes as virulence factors of Candida albicans , 2005, Mycoses.

[10]  M. Kelly,et al.  The Candida albicans Vacuole Is Required for Differentiation and Efficient Macrophage Killing , 2005, Eukaryotic Cell.

[11]  Alistair J. P. Brown,et al.  Global Role of the Protein Kinase Gcn2 in the Human Pathogen Candida albicans , 2005, Eukaryotic Cell.

[12]  M. Kempf,et al.  DNA array analysis of Candida albicans gene expression in response to adherence to polystyrene. , 2005, FEMS microbiology letters.

[13]  S. Wölfl,et al.  Phosphatidylinositol 3-kinase VPS34 of Candida albicans is involved in filamentous growth, secretion of aspartic proteases, and intracellular detoxification. , 2005, FEMS yeast research.

[14]  J. Lopez-Ribot,et al.  Techniques for antifungal susceptibility testing of Candida albicans biofilms. , 2005, Methods in molecular medicine.

[15]  C. d’Enfert,et al.  Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns , 2004, Eukaryotic Cell.

[16]  Samuel A. Lee,et al.  Advances in Diagnostic Methods for Invasive Candida and Aspergillus Infections , 2004 .

[17]  S. Challacombe,et al.  Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis , 2003, Microbiology and Molecular Biology Reviews.

[18]  A. Cashmore,et al.  Candida albicans VPS11 Is Required for Vacuole Biogenesis and Germ Tube Formation , 2003, Eukaryotic Cell.

[19]  Julie J. Blake,et al.  Inactivation of Kex2p Diminishes the Virulence of Candida albicans * , 2003, The Journal of Biological Chemistry.

[20]  G. Khuller,et al.  Signaling Through Protein Kinases and Transcriptional Regulators in Candida albicans , 2003, Critical reviews in microbiology.

[21]  B. Wickes,et al.  Inhibition of Candida albicans Biofilm Formation by Farnesol, a Quorum-Sensing Molecule , 2002, Applied and Environmental Microbiology.

[22]  J. Gerst,et al.  Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast , 2002, The EMBO journal.

[23]  R. Schekman,et al.  A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway , 2002, The Journal of cell biology.

[24]  T. Stevens,et al.  Studying yeast vacuoles. , 2002, Methods in enzymology.

[25]  J. Bonifacino,et al.  Structural Requirements for Function of Yeast GGAs in Vacuolar Protein Sorting, α-Factor Maturation, and Interactions with Clathrin , 2001, Molecular and Cellular Biology.

[26]  K. Haynes Virulence in Candida species. , 2001, Trends in microbiology.

[27]  H. Liu,et al.  Transcriptional control of dimorphism in Candida albicans. , 2001, Current opinion in microbiology.

[28]  Hironobu Nakayama,et al.  Tetracycline-Regulatable System To Tightly Control Gene Expression in the Pathogenic Fungus Candida albicans , 2000, Infection and Immunity.

[29]  R. Wetzker,et al.  A phosphatidylinositol 3-kinase of Candida albicans influences adhesion, filamentous growth and virulence. , 2000, Microbiology.

[30]  S. Emr,et al.  Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. , 2000, Molecular cell.

[31]  A. Johnson,et al.  TUP1, CPH1 and EFG1 make independent contributions to filamentation in candida albicans. , 2000, Genetics.

[32]  A. Mitchell,et al.  RIM101-Dependent and -Independent Pathways Govern pH Responses in Candida albicans , 2000, Molecular and Cellular Biology.

[33]  A. Mitchell,et al.  A recyclable Candida albicans URA3 cassette for PCR product‐directed gene disruptions , 2000, Yeast.

[34]  M. Ghannoum Potential role of phospholipases in virulence and fungal pathogenesis. , 2000, Clinical microbiology reviews.

[35]  C. Kumamoto,et al.  Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene , 1999, Molecular microbiology.

[36]  A. Brown,et al.  Regulatory networks controlling Candida albicans morphogenesis. , 1999, Trends in microbiology.

[37]  A. Mitchell,et al.  Rapid Hypothesis Testing with Candida albicans through Gene Disruption with Short Homology Regions , 1999, Journal of bacteriology.

[38]  T. Stevens,et al.  Vacuole Biogenesis in Saccharomyces cerevisiae: Protein Transport Pathways to the Yeast Vacuole , 1998, Microbiology and Molecular Biology Reviews.

[39]  N. Agabian,et al.  KEX2 Influences Candida albicans Proteinase Secretion and Hyphal Formation* , 1997, The Journal of Biological Chemistry.

[40]  S. Emr,et al.  A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. , 1997, Molecular biology of the cell.

[41]  A. Johnson,et al.  Control of filament formation in Candida albicans by the transcriptional repressor TUP1. , 1997, Science.

[42]  J. Ernst,et al.  Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi , 1997, The EMBO journal.

[43]  M. Ghannoum,et al.  Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans. , 1997, Microbiology.

[44]  A. Bretscher,et al.  Parallel secretory pathways to the cell surface in yeast , 1995, The Journal of cell biology.

[45]  W. Jarvis Epidemiology of nosocomial fungal infections, with emphasis on Candida species. , 1995, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[46]  T. Stevens,et al.  Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane , 1995, The Journal of cell biology.

[47]  S. Emr,et al.  A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast , 1995, The Journal of cell biology.

[48]  G. Fink,et al.  Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. , 1994, Science.

[49]  Karl Esser,et al.  The Mycota : a comprehensive treatise on fungi as experimental systems for basic and applied research , 1994 .

[50]  G. Payne,et al.  Vps1p, a member of the dynamin GTPase family, is necessary for Golgi membrane protein retention in Saccharomyces cerevisiae. , 1993, The EMBO journal.

[51]  T. Stevens,et al.  An MBoC Favorite: Morphological classification of the yeast vacuolar protein-sorting mutants: evidence for a prevacuolar compartment in class E vps mutants , 1992, Molecular biology of the cell.

[52]  T. Stevens,et al.  The VPS1 protein, a homolog of dynamin required for vacuolar protein sorting in Saccharomyces cerevisiae, is a GTPase with two functionally separable domains , 1992, The Journal of cell biology.

[53]  A putative zinc finger protein, Saccharomyces cerevisiae Vps18p, affects late Golgi functions required for vacuolar protein sorting and efficient alpha-factor prohormone maturation. , 1991, Molecular and cellular biology.

[54]  T. Stevens,et al.  A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting , 1990, Cell.

[55]  J. Edwards,et al.  Segregation of proteinase-negative mutants from heterozygous Candida albicans. , 1987, Journal of general microbiology.

[56]  D. Kirsch,et al.  Integrative transformation of Candida albicans, using a cloned Candida ADE2 gene , 1986, Molecular and cellular biology.