A 150 GHz Amplifier With 8 dB Gain and $+$6 dBm $P_{\rm sat}$ in Digital 65 nm CMOS Using Dummy-Prefilled Microstrip Lines

A 150 GHz amplifier in digital 65 nm CMOS process is presented. Matching loss is reduced and bandwidth extended by simplistic topology: no dc-block capacitor, shunt-only tuning and radial stubs for ac ground. Dummy-prefilled microstrip lines, with explicit yet efficient dummy modeling, are used as a compact, density-rule compliant matching element. Transistor layout with parallel gate feed yields 5.7 dB of MSG at 150 GHz. Measurement shows the amplifier exhibits 8.2 dB of gain, 6.3 dBm of Psat, 1.5 dBm of PidB and 27 GHz of 3 dB bandwidth, while consuming 25.5 mW at 1.1 V. The dummy-prefilled microstrip line exhibits QTL ¿ 12 up to 200 GHz.

[1]  D. Belot,et al.  (INVITED) Deep-submicron digital CMOS potentialities for millimeter-wave applications , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[2]  M. Barsky,et al.  35-nm InP HEMT SMMIC Amplifier With 4.4-dB Gain at 308 GHz , 2007, IEEE Electron Device Letters.

[3]  S.T. Nicolson,et al.  Methodology for Simultaneous Noise and Impedance Matching in W-Band LNAs , 2006, 2006 IEEE Compound Semiconductor Integrated Circuit Symposium.

[4]  D. Boning,et al.  The physical and electrical effects of metal-fill patterning practices for oxide chemical-mechanical polishing processes , 1998 .

[5]  Tatsuya Hirose,et al.  60 and 77GHz Power Amplifiers in Standard 90nm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[6]  M.P. van der Heijden,et al.  On the design of unilateral dual-loop feedback low-noise amplifiers with simultaneous noise, impedance, and IIP3 match , 2004, IEEE Journal of Solid-State Circuits.

[7]  L.F. Tiemeijer,et al.  Physics-based wideband predictive compact model for inductors with high amounts of dummy metal fill , 2006, IEEE Transactions on Microwave Theory and Techniques.

[8]  Joohwa Kim,et al.  A 26dB-gain 100GHz Si/SiGe Cascaded Constructive-Wave Amplifier , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[9]  Corrado Carta,et al.  A 1.1V 150GHz amplifier with 8dB gain and +6dBm saturated output power in standard digital 65nm CMOS using dummy-prefilled microstrip lines , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[10]  I.C.H. Lai,et al.  High-Q Slow-Wave Transmission Line for Chip Area Reduction on Advanced CMOS Processes , 2007, 2007 IEEE International Conference on Microelectronic Test Structures.

[11]  A. Tomkins,et al.  A 1.2V, 140GHz receiver with on-die antenna in 65nm CMOS , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[12]  M. Kumar,et al.  Pattern Density Methodology Using IBM Foundry Technologies , 2007, 2007 Proceedings 57th Electronic Components and Technology Conference.

[13]  Didier Belot,et al.  80 GHz low noise amplifiers in 65nm CMOS SOI , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.

[14]  Zuo-Min Tsai,et al.  A new feedback method for power amplifier with unilateralization and improved output return loss , 2006, IEEE Transactions on Microwave Theory and Techniques.

[15]  Andreas Weisshaar,et al.  Accurate closed-form capacitance extraction formulas for metal fill in RFICs , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[16]  A. Mangan,et al.  De-embedding transmission line measurements for accurate modeling of IC designs , 2006, IEEE Transactions on Electron Devices.

[17]  B. Heydari,et al.  Millimeter-Wave Devices and Circuit Blocks up to 104 GHz in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[18]  K. Soumyanath,et al.  A 64 GHz LNA With 15.5 dB Gain and 6.5 dB NF in 90 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[19]  N. Kukutsu,et al.  10-Gbit/s Wireless Link Using InP HEMT MMICs for Generating 120-GHz-Band Millimeter-Wave Signal , 2009, IEEE Transactions on Microwave Theory and Techniques.

[20]  P. Garcia,et al.  A Wideband W-Band Receiver Front-End in 65-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[21]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[22]  Mikko Kärkkäinen,et al.  Millimeter-Wave Integrated Circuits in 65-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[23]  Ning Zhang,et al.  80-GHz Tuned Amplifier in Bulk CMOS , 2008, IEEE Microwave and Wireless Components Letters.

[24]  N. Kukutsu,et al.  10-Gbit/s wireless link systems using the 120-GHz band , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[25]  B. Heydari,et al.  Internal Unilaterization Technique for CMOS mm-Wave Amplifiers , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[26]  G.M. Rebeiz,et al.  A W-band SiGe 1.5V LNA for imaging applications , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[27]  Jeng-Han Tsai,et al.  A W-Band Medium Power Amplifier in 90 nm CMOS , 2008, IEEE Microwave and Wireless Components Letters.

[28]  W. Deal,et al.  Demonstration of 184 and 255-GHz Amplifiers Using InP HBT Technology , 2008, IEEE Microwave and Wireless Components Letters.

[29]  P. Chevalier,et al.  80/160-GHz Transceiver and 140-GHz Amplifier in SiGe Technology , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[30]  M. Urteaga,et al.  250 nm InP DHBT monolithic amplifiers with 4.8 dB gain at 324 GHz , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[31]  F. Gianesello,et al.  65 nm RFCMOS technologies with bulk and HR SOI substrate for millimeter wave passives and circuits characterized up to 220 GHZ , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[32]  Mikko Kärkkäinen,et al.  W-Band CMOS Amplifiers Achieving +10 dBm Saturated Output Power and 7.5 dB NF , 2009, IEEE J. Solid State Circuits.

[33]  H.P. Moyer,et al.  A Low Noise Chipset for Passive Millimeter Wave Imaging , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[34]  Daquan Huang,et al.  A 60GHz CMOS VCO Using On-Chip Resonator with Embedded Artificial Dielectric for Size, Loss and Noise Reduction , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[35]  A. Hajimiri (Invited) mm-wave silicon ICs: An opportunity for holistic design , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[36]  S.P. Voinigescu,et al.  The Invariance of Characteristic Current Densities in Nanoscale MOSFETs and Its Impact on Algorithmic Design Methodologies and Design Porting of Si(Ge) (Bi)CMOS High-Speed Building Blocks , 2006, IEEE Journal of Solid-State Circuits.

[37]  Jeng-Han Tsai,et al.  A 86 to 108 GHz Amplifier in 90 nm CMOS , 2008, IEEE Microwave and Wireless Components Letters.

[38]  W. R. Eisenstadt,et al.  S-parameter-based IC interconnect transmission line characterization , 1992 .

[39]  P. Chevalier,et al.  Single-Chip W-band SiGe HBT Transceivers and Receivers for Doppler Radar and Millimeter-Wave Imaging , 2008, IEEE Journal of Solid-State Circuits.

[40]  J.R. Long,et al.  Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits , 2006, IEEE Journal of Solid-State Circuits.

[41]  P. Chevalier,et al.  170-GHz transceiver with on-chip antennas in SiGe technology , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[42]  Sorin P. Voinigescu,et al.  A 95GHz Receiver with Fundamental-Frequency VCO and Static Frequency Divider in 65nm Digital CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[43]  W. Deal,et al.  Demonstration of a S-MMIC LNA with 16-dB Gain at 340-GHz , 2007, 2007 IEEE Compound Semiconductor Integrated Circuits Symposium.

[44]  M.T. Yang,et al.  On the millimeter-wave characteristics and model of on-chip interconnect transmission lines up to 110 GHz , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..