A Persistent Homology Perspective to the Link Prediction Problem

Persistent homology is a powerful tool in Topological Data Analysis (TDA) to capture topological properties of data succinctly at different spatial resolutions. For graphical data, shape and structure of the neighborhood of individual data items (nodes) is an essential means of characterizing their properties. We propose the use of persistent homology methods to capture structural and topological properties of graphs and use it to address the problem of link prediction. We achieve encouraging results on nine different real-world datasets that attest to the potential of persistent homology based methods for network analysis.

[1]  Xiaojin Zhu,et al.  Persistent Homology: An Introduction and a New Text Representation for Natural Language Processing , 2013, IJCAI.

[2]  C. J. Carstens,et al.  Persistent Homology of Collaboration Networks , 2013 .

[3]  Jure Leskovec,et al.  Microscopic evolution of social networks , 2008, KDD.

[4]  Vinith Misra,et al.  Bernoulli Embeddings for Graphs , 2018, AAAI.

[5]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[6]  Jennifer Widom,et al.  SimRank: a measure of structural-context similarity , 2002, KDD.

[7]  Jure Leskovec,et al.  Learning to Discover Social Circles in Ego Networks , 2012, NIPS.

[8]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[9]  Christos Faloutsos,et al.  Graph evolution: Densification and shrinking diameters , 2006, TKDD.

[10]  Sumit Bhatia,et al.  Know Thy Neighbors, and More!: Studying the Role of Context in Entity Recommendation , 2018, HT.

[11]  Tom Heskes,et al.  The exact probability distribution of the rank product statistics for replicated experiments , 2013, FEBS letters.

[12]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Huan Liu,et al.  Relational learning via latent social dimensions , 2009, KDD.

[14]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[15]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[16]  S. Coulomb,et al.  Gene essentiality and the topology of protein interaction networks , 2005, Proceedings of the Royal Society B: Biological Sciences.

[17]  Manohar Kaul,et al.  Understanding and Predicting Links in Graphs: A Persistent Homology Perspective , 2018, ArXiv.

[18]  Daniel R. Figueiredo,et al.  struc2vec: Learning Node Representations from Structural Identity , 2017, KDD.

[19]  Donald B. Johnson,et al.  Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.

[20]  Dmitriy Morozov,et al.  Geometry Helps to Compare Persistence Diagrams , 2016, ALENEX.

[21]  Sara Cohen,et al.  An Axiomatic Approach to Link Prediction , 2015, AAAI.

[22]  Lada A. Adamic,et al.  Friends and neighbors on the Web , 2003, Soc. Networks.

[23]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[24]  Moo K. Chung,et al.  Persistence Diagrams of Cortical Surface Data , 2009, IPMI.

[25]  Prasenjit Mitra,et al.  Utilizing Context in Generative Bayesian Models for Linked Corpus , 2010, AAAI.

[26]  Ram Ramanathan,et al.  Comparative Topological Signatures of Growing Collaboration Networks , 2017 .

[27]  M. Moran,et al.  Large-scale mapping of human protein–protein interactions by mass spectrometry , 2007, Molecular systems biology.

[28]  Marko Bajec,et al.  Robust network community detection using balanced propagation , 2011, ArXiv.

[29]  L. Getoor,et al.  Link-Based Classification , 2003, Encyclopedia of Machine Learning and Data Mining.

[30]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[31]  Purnamrita Sarkar,et al.  Theoretical Justification of Popular Link Prediction Heuristics , 2011, IJCAI.

[32]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[33]  Cornelia Caragea,et al.  Specialized Research Datasets in the CiteSeerx Digital Library , 2012, D Lib Mag..

[34]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[35]  Ian H. Witten,et al.  An effective, low-cost measure of semantic relatedness obtained from Wikipedia links , 2008 .

[36]  Peter J. Haas,et al.  Predicting Future Scientific Discoveries Based on a Networked Analysis of the Past Literature , 2015, KDD.

[37]  Jure Leskovec,et al.  Supervised random walks: predicting and recommending links in social networks , 2010, WSDM '11.

[38]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[39]  Paul Rosen,et al.  Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology , 2017, 2018 IEEE Pacific Visualization Symposium (PacificVis).

[40]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .