Modeling Graphene in the Finite-Difference Time-Domain Method Using a Surface Boundary Condition

An effective approach for finite-difference time-domain modeling of graphene as a conducting sheet is proposed. First, we present a new technique for implementing a conducting surface boundary condition in the FDTD method; then, the dispersive surface conductivity of graphene is imposed. Numerical examples are presented to show the stability, accuracy, applicability, and advantages of the proposed approach. Validation is achieved by comparison with existing analytic methods.

[1]  James G. Maloney,et al.  The use of surface impedance concepts in the finite-difference time-domain method , 1992 .

[2]  T. Cui,et al.  Efficient manipulation of surface plasmon polariton waves in graphene , 2012 .

[3]  Hai Lin,et al.  FDTD Modeling of Graphene Devices Using Complex Conjugate Dispersion Material Model , 2012, IEEE Microwave and Wireless Components Letters.

[5]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[6]  N. M. R. Peres,et al.  Electronic transport in graphene : A semiclassical approach including midgap states , 2007, 0707.3004.

[7]  G. Hanson,et al.  Dyadic Green's Functions for an Anisotropic, Non-Local Model of Biased Graphene , 2008, IEEE Transactions on Antennas and Propagation.

[8]  Nader Engheta,et al.  Fourier Optics on Graphene , 2012 .

[9]  N. Kantartzis,et al.  Optimal Modeling of Infinite Graphene Sheets via a Class of Generalized FDTD Schemes , 2012, IEEE Transactions on Magnetics.

[10]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[11]  Qianfan Xu,et al.  Excitation of plasmonic waves in graphene by guided-mode resonances. , 2012, ACS nano.

[12]  A. Cabellos-Aparicio,et al.  Graphene-based nano-patch antenna for terahertz radiation , 2012 .

[13]  Daniël De Zutter,et al.  Accurate modeling of thin conducting layers in FDTD , 1998 .

[14]  Implementation and Application of Resistive Sheet Boundary Condition in the Finite-Difference Time-Domain Method , 2004 .

[15]  Jung Min Lee,et al.  Graphene-contact electrically driven microdisk lasers , 2012, Nature Communications.

[16]  J. S. Gomez-Diaz,et al.  Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets , 2012 .

[17]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[18]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[19]  C. Sarris,et al.  A Perfectly Matched Layer for Subcell FDTD and Applications to the Modeling of Graphene Structures , 2012, IEEE Antennas and Wireless Propagation Letters.

[20]  K. Kunz,et al.  Finite-difference time-domain implementation of surface impedance boundary conditions , 1992 .

[21]  M. S. Sarto,et al.  A new model for the FDTD analysis of the shielding performances of thin composite structures , 1999 .

[22]  A. Lavrinenko,et al.  Graphene hyperlens for terahertz radiation , 2012, 1209.3951.

[23]  C. Caloz,et al.  Optically Transparent and Flexible Graphene Reciprocal and Nonreciprocal Microwave Planar Components , 2012, IEEE Microwave and Wireless Components Letters.

[24]  James G. Maloney,et al.  A comparison of methods for modeling electrically thin dielectric and conducting sheets in the finite-difference time-domain (FDTD) method , 1993 .

[25]  A. Alú,et al.  Atomically thin surface cloak using graphene monolayers. , 2011, ACS nano.

[26]  G. Hanson Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene , 2007, cond-mat/0701205.

[27]  Lin-Kun Wu,et al.  Implementation and application of resistive sheet boundary condition in the finite-difference time-domain method (EM scattering) , 1992 .

[28]  M. Feliziani,et al.  Finite-difference time-domain modeling of thin shields , 2000 .

[29]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[30]  F. J. Garcia-Vidal,et al.  Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons , 2011, 1201.0191.

[31]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[32]  W. Thiel A surface impedance approach for modeling transmission line losses in FDTD , 2000 .

[33]  A. Mock Padé approximant spectral fit for FDTD simulation of graphene in the near infrared , 2012 .

[34]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .