How Lattice Dynamics Moderate the Electronic Properties of Metal-Halide Perovskites.

Metal-halide perovskites have emerged as highly promising semiconductors with excellent optoelectronic properties. This Perspective outlines how the dynamic response of the ionic lattice affects key electronic properties such as exciton binding energies and charge-carrier mobilities in hybrid perovskites. Such links are shown to derive from the frequency-dependence of the dielectric function, which is governed by contributions from electronic interband transitions, polar vibrations of the metal-halide sublattice, organic cation collective reorientations, and ionic movement. The influence of each of these contributions to charge-carrier screening and carrier-lattice interactions is discussed, which allows for general trends with material composition to be revealed. Overall, this Perspective highlights the challenges and questions arising from the peculiar combination of a soft polar metal-halide sublattice interspersed with rotationally mobile dipolar molecules that is encountered in hybrid metal-halide perovskites.

[1]  M. Bonn,et al.  Vibrational Coupling between Organic and Inorganic Sublattices of Hybrid Perovskites. , 2018, Angewandte Chemie.

[2]  M. Johnston,et al.  The Effects of Doping Density and Temperature on the Optoelectronic Properties of Formamidinium Tin Triiodide Thin Films , 2018, Advanced materials.

[3]  R. T. Phillips,et al.  Raman Spectrum of the Organic–Inorganic Halide Perovskite CH3NH3PbI3 from First Principles and High-Resolution Low-Temperature Raman Measurements , 2018, The Journal of Physical Chemistry C.

[4]  M. Johnston,et al.  Impact of the Organic Cation on the Optoelectronic Properties of Formamidinium Lead Triiodide. , 2018, The journal of physical chemistry letters.

[5]  M. Johnston,et al.  Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin–Lead Triiodide Perovskites , 2018, Advanced Functional Materials.

[6]  Martin A. Green,et al.  Solar cell efficiency tables (version 52) , 2018, Progress in Photovoltaics: Research and Applications.

[7]  X. Zhu,et al.  Ferroelectric large polarons , 2018, Nature Materials.

[8]  D. Reichman,et al.  What Remains Unexplained about the Properties of Halide Perovskites? , 2018, Advanced materials.

[9]  C. Brabec,et al.  Assessing Temperature Dependence of Drift Mobility in Methylammonium Lead Iodide Perovskite Single Crystals , 2018 .

[10]  P. Umari,et al.  Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites. , 2018, The journal of physical chemistry letters.

[11]  钟凯伦,et al.  CH 3 NH 3 PbI 3 薄膜中放大自发辐射效应的研究 , 2018 .

[12]  A. Wakamiya,et al.  Title Photoelectronic Responses in Solution-Processed Perovskite CH[3]NH[3]PbI[3] Solar Cells Studied by Photoluminescence and Photoabsorption Spectroscopy , 2018 .

[13]  Jay B. Patel,et al.  Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process , 2018, Nature Communications.

[14]  M. Kanatzidis,et al.  Universal Dynamics of Molecular Reorientation in Hybrid Lead Iodide Perovskites. , 2017, Journal of the American Chemical Society.

[15]  E. Hendry,et al.  Role of Dielectric Drag in Polaron Mobility in Lead Halide Perovskites , 2017 .

[16]  V. Shvartsman,et al.  Dielectric Response: Answer to Many Questions in the Methylammonium Lead Halide Solar Cell Absorbers , 2017 .

[17]  X. Zhu,et al.  Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation , 2017, Science Advances.

[18]  J. B. Baxter,et al.  Slow Electron–Hole Recombination in Lead Iodide Perovskites Does Not Require a Molecular Dipole , 2017 .

[19]  Hai-Qing Lin,et al.  Charge transport in hybrid halide perovskites , 2017, 1708.09469.

[20]  G. Kresse,et al.  Behavior of Methylammonium Dipoles in MAPbX3 (X = Br and I) , 2017, The journal of physical chemistry letters.

[21]  Jay B. Patel,et al.  Photon Reabsorption Masks Intrinsic Bimolecular Charge-Carrier Recombination in CH3NH3PbI3 Perovskite. , 2017, Nano letters.

[22]  L. Herz Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits , 2017 .

[23]  J. A. Töfflinger,et al.  Determination of the complex refractive index and optical bandgap of CH3NH3PbI3 thin films , 2017 .

[24]  J. Frost Polaron mobility in halide perovskites , 2017 .

[25]  Jay B. Patel,et al.  Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties , 2017 .

[26]  L. Kronik,et al.  Local Polar Fluctuations in Lead Halide Perovskite Crystals. , 2016, Physical review letters.

[27]  Song Jin,et al.  Organic Cations Might Not Be Essential to the Remarkable Properties of Band Edge Carriers in Lead Halide Perovskites , 2017, Advanced materials.

[28]  Milot RebeccaL.,et al.  Radiative Monomolecular Recombination Boosts AmplifiedSpontaneous Emission in HC(NH 2 ) 2 SnI 3 Perovskite Films , 2016 .

[29]  M. Johnston,et al.  Radiative Monomolecular Recombination Boosts Amplified Spontaneous Emission in HC(NH2)2SnI3 Perovskite Films. , 2016, The journal of physical chemistry letters.

[30]  K. Zhu,et al.  Effects of alloying on the optical properties of organic–inorganic lead halide perovskite thin films , 2016 .

[31]  H. Yi,et al.  Intrinsic Charge Transport across Phase Transitions in Hybrid Organo‐Inorganic Perovskites , 2016, Advanced materials.

[32]  Zhi-Gang Yu Rashba Effect and Carrier Mobility in Hybrid Organic-Inorganic Perovskites. , 2016, The journal of physical chemistry letters.

[33]  L. Kronik,et al.  Optical phonons in methylammonium lead halide perovskites and implications for charge transport , 2016, 1607.08541.

[34]  P. Delugas,et al.  Low electron-polar optical phonon scattering as a fundamental aspect of carrier mobility in methylammonium lead halide CH3NH3PbI3 perovskites. , 2016, Physical chemistry chemical physics : PCCP.

[35]  Gautam Gupta,et al.  Polaron Stabilization by Cooperative Lattice Distortion and Cation Rotations in Hybrid Perovskite Materials. , 2016, Nano letters.

[36]  Feliciano Giustino,et al.  Electron–phonon coupling in hybrid lead halide perovskites , 2016, Nature Communications.

[37]  Laura M. Herz,et al.  Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. , 2016, Annual review of physical chemistry.

[38]  M. Johnston,et al.  Effect of Structural Phase Transition on Charge-Carrier Lifetimes and Defects in CH3NH3SnI3 Perovskite. , 2016, The journal of physical chemistry letters.

[39]  Aron Walsh,et al.  Experimental and theoretical optical properties of methylammonium lead halide perovskites. , 2016, Nanoscale.

[40]  Olivier Durand,et al.  Carrier scattering processes and low energy phonon spectroscopy in hybrid perovskites crystals , 2016, SPIE OPTO.

[41]  M. Green,et al.  Temperature dependent optical properties of CH 3 NH 3 PbI 3 perovskite by spectroscopic ellipsometry , 2016 .

[42]  A. Walsh,et al.  What Is Moving in Hybrid Halide Perovskite Solar Cells? , 2016, Accounts of chemical research.

[43]  Jay B. Patel,et al.  Formation Dynamics of CH3NH3PbI3 Perovskite Following Two-Step Layer Deposition. , 2016, The journal of physical chemistry letters.

[44]  Towfiq Ahmed,et al.  Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach. , 2016, The journal of physical chemistry letters.

[45]  Georg Kresse,et al.  Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites , 2015, Scientific Reports.

[46]  J. Luther,et al.  Observation of a hot-phonon bottleneck in lead-iodide perovskites , 2015, Nature Photonics.

[47]  Craig M. Brown,et al.  Rotational Dynamics of Organic Cations in CH 3 NH 3 PbI 3 Perovskite , 2016 .

[48]  M. Green,et al.  Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites , 2015 .

[49]  M. Bonn,et al.  Phonon-Electron Scattering Limits Free Charge Mobility in Methylammonium Lead Iodide Perovskites. , 2015, The journal of physical chemistry letters.

[50]  M. Johnston,et al.  Charge‐Carrier Dynamics and Mobilities in Formamidinium Lead Mixed‐Halide Perovskites , 2015, Advanced materials.

[51]  H. Snaith,et al.  Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors , 2015, 1511.06507.

[52]  Jay B. Patel,et al.  Vibrational Properties of the Organic–Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra , 2015 .

[53]  M. Mainas,et al.  Absorption F-sum rule for the exciton binding energy in methylammonium lead halide perovskites. , 2015, The journal of physical chemistry letters.

[54]  L. Kronik,et al.  Are Mobilities in Hybrid Organic-Inorganic Halide Perovskites Actually "High"? , 2015, The journal of physical chemistry letters.

[55]  Laura M. Herz,et al.  Temperature‐Dependent Charge‐Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films , 2015 .

[56]  A. Walsh,et al.  Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites. , 2015, The journal of physical chemistry letters.

[57]  Sidney R. Cohen,et al.  Mechanical properties of APbX_3 (A = Cs or CH_3NH_3; X= I or Br) perovskite single crystals , 2015, 1508.04071.

[58]  T. Murakami,et al.  Optical transitions in hybrid perovskite solar cells: Ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3 , 2015, 1507.08824.

[59]  A. Pucci,et al.  Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites. , 2015, The journal of physical chemistry letters.

[60]  David G. Cooke,et al.  Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3 , 2015, 1507.02179.

[61]  P. Wahnón,et al.  Nonhydrogenic exciton spectrum in perovskite CH3NH3PbI3 , 2015, 1507.00404.

[62]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[63]  David Cahen,et al.  How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. , 2015, The journal of physical chemistry letters.

[64]  Aron Walsh,et al.  The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells , 2015, Nature Communications.

[65]  H. Snaith,et al.  Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites , 2015, Nature Physics.

[66]  Peihong Zhang,et al.  High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3. , 2015, Physical chemistry chemical physics : PCCP.

[67]  H. Snaith,et al.  Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices , 2015, 1504.05454.

[68]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[69]  A. Fejfar,et al.  Raman Spectroscopy of Organic-Inorganic Halide Perovskites. , 2015, The journal of physical chemistry letters.

[70]  Christophe Ballif,et al.  Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. , 2015, The journal of physical chemistry letters.

[71]  P. Wahnón,et al.  Nonhydrogenic exciton spectrum in perovskite CH 3 NH 3 PbI 3 , 2015 .

[72]  Nripan Mathews,et al.  Lead‐Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation , 2014, Advanced materials.

[73]  Shuzi Hayase,et al.  Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. , 2014, Journal of the American Chemical Society.

[74]  C. La-o-vorakiat,et al.  Optical properties of organometallic perovskite: An ab initio study using relativistic GW correction and Bethe-Salpeter equation , 2014, 1409.4753.

[75]  Giulia Galli,et al.  Perovskites for Solar Thermoelectric Applications: A First Principle Study of CH3NH3AI3 (A = Pb and Sn) , 2014 .

[76]  R. Marcus,et al.  Computed and Experimental Absorption Spectra of the Perovskite CH3NH3PbI3. , 2014, The journal of physical chemistry letters.

[77]  M. Johnston,et al.  Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films , 2014 .

[78]  Juan Bisquert,et al.  Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[79]  Tonu Pullerits,et al.  Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite. , 2014, The journal of physical chemistry letters.

[80]  Claudine Katan,et al.  Analysis of Multivalley and Multibandgap Absorption and Enhancement of Free Carriers Related to Exciton Screening in Hybrid Perovskites , 2014 .

[81]  P. Umari,et al.  Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. , 2014, Nano letters.

[82]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[83]  H. Snaith,et al.  The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment. , 2014, The journal of physical chemistry letters.

[84]  Self-consistent relativistic band structure of the CH 3 NH 3 PbI 3 perovskite , 2014 .

[85]  P. Umari,et al.  Relativistic Solar Cells , 2013, 1309.4895.

[86]  Aron Walsh,et al.  Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles , 2013, 1309.4215.

[87]  O. Madelung Semiconductors - Basic Data , 2012 .

[88]  M. Fox Optical Properties of Solids , 2010 .

[89]  I. Biaggio,et al.  Mobility of an electron in a multimode polar lattice , 1999 .

[90]  N. Miura,et al.  Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 , 1994 .

[91]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[92]  O. Knop,et al.  Cation rotation in methylammonium lead halides , 1985 .

[93]  Daniel L. Rode,et al.  Electron Transport in InSb, InAs, and InP , 1971 .

[94]  G. E. Stillman,et al.  Hall coefficient factor for polar mode scattering in n-type GaAs☆ , 1970 .

[95]  N. Godinho,et al.  Epitaxial indium arsenide by vacuum evaporation , 1970 .

[96]  K. Weiser,et al.  Electron Mobility in InP , 1958 .

[97]  R. J. Elliott,et al.  Intensity of Optical Absorption by Excitons , 1957 .

[98]  T. Geballe,et al.  Hall Effect and Conductivity of InSb , 1955 .

[99]  Richard Phillips Feynman,et al.  Slow Electrons in a Polar Crystal , 1955 .

[100]  H. Fröhlich Electrons in lattice fields , 1954 .