An efficient CeO2 /CoSe2 Nanobelt composite for electrochemical water oxidation.

CeO2 /CoSe2 nanobelt composite for electrochemical water oxidation: A new CeO2 /CoSe2 nanobelt composite is developed as a highly effective water oxidation electrocatalyst by growing CeO2 nanoparticle CoSe2 nanobelts in situ via a simple polyol reduction route. The constructed hybrid catalyst shows extremely high oxgen evolution reaction (OER) activity, even beyond the state-of-the-art RuO2 catalyst in alkaline media.

[1]  A. Laio,et al.  Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation. , 2012, ACS nano.

[2]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[3]  Hannes Jónsson,et al.  Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. , 2012, Physical chemistry chemical physics : PCCP.

[4]  A. Llobet,et al.  Molecular water oxidation mechanisms followed by transition metals: state of the art. , 2014, Accounts of chemical research.

[5]  Jun Chen,et al.  Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. , 2011, Nature chemistry.

[6]  R. Day,et al.  Dopant-mediated oxygen vacancy tuning in ceria nanoparticles , 2009, Nanotechnology.

[7]  Simon J. L. Billinge,et al.  Intermediate-range structure of self-assembled cobalt-based oxygen-evolving catalyst. , 2013, Journal of the American Chemical Society.

[8]  Shuhong Yu,et al.  Synthesis of unique ultrathin lamellar mesostructured CoSe2-amine (protonated) nanobelts in a binary solution. , 2009, Journal of the American Chemical Society.

[9]  Shuhong Yu,et al.  In situ controllable synthesis of magnetite nanocrystals/CoSe2 hybrid nanobelts and their enhanced catalytic performance , 2010 .

[10]  C. Peden,et al.  Interaction of Molecular Oxygen with the Vacuum-Annealed TiO2(110) Surface: Molecular and Dissociative Channels , 1999 .

[11]  Hailiang Wang,et al.  Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. , 2013, Journal of the American Chemical Society.

[12]  Charles C. L. McCrory,et al.  Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. , 2013, Journal of the American Chemical Society.

[13]  Matthew W Kanan,et al.  Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. , 2010, Journal of the American Chemical Society.

[14]  A. Bell,et al.  Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. , 2011, Journal of the American Chemical Society.

[15]  Jens K Nørskov,et al.  Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. , 2013, Journal of the American Chemical Society.

[16]  S. Boettcher,et al.  Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. , 2012, Journal of the American Chemical Society.

[17]  C. Berlinguette,et al.  Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. , 2013, Journal of the American Chemical Society.

[18]  Tom Regier,et al.  Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. , 2011, Nature materials.

[19]  E. Anastassakis Light scattering in transition metal diselenides CoSe2 and CuSe2 , 1973 .

[20]  A. Grimaud,et al.  Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts , 2012 .

[21]  Shuhong Yu,et al.  Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). , 2012, Small.

[22]  James R. McKone,et al.  Will Solar-Driven Water-Splitting Devices See the Light of Day? , 2014 .

[23]  P. S. Pizani,et al.  Structural studies of cobalt selenides prepared by mechanical alloying , 2002 .

[24]  Shuhong Yu,et al.  A methanol-tolerant Pt/CoSe2 nanobelt cathode catalyst for direct methanol fuel cells. , 2011, Angewandte Chemie.

[25]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[26]  Charles T. Campbell,et al.  Oxygen Vacancies and Catalysis on Ceria Surfaces , 2005, Science.

[27]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[28]  J. Paier,et al.  Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. , 2013, Chemical reviews.

[29]  Maria Chan,et al.  Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. , 2012, Nature materials.

[30]  C. Yang,et al.  Size-dependent Raman red shifts of semiconductor nanocrystals. , 2008, The journal of physical chemistry. B.

[31]  J. Yates,et al.  Photooxidation of CH3Cl on TiO2(110): A Mechanism Not Involving H2O , 1995 .

[32]  Zhipan Zhang,et al.  Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis , 2013, Science.

[33]  E. Sato,et al.  Electrocatalytic properties of transition metal oxides for oxygen evolution reaction , 1986 .

[34]  Jun Jiang,et al.  Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. , 2012, Journal of the American Chemical Society.

[35]  A. Bell,et al.  Size-Dependent Activity of Co 3 O 4 Nanoparticle Anodes for Alkaline Water Electrolysis , 2009 .

[36]  Amit Kumar,et al.  Measuring oxygen reduction/evolution reactions on the nanoscale. , 2011, Nature chemistry.

[37]  Shuhong Yu,et al.  Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. , 2013, Angewandte Chemie.