Advancements on problems involving maximum flows

[1]  Peter Kall,et al.  Stochastic Programming , 1995 .

[2]  Ravindra K. Ahuja,et al.  Network Models in Railroad Planning and Scheduling , 2005 .

[3]  R. Kevin Wood,et al.  Shortest‐path network interdiction , 2002, Networks.

[4]  Levent Bingol A Lagrangian Heuristic for solving a network interdiction problem , 2001 .

[5]  Maria Grazia Scutellà,et al.  A note on the parametric maximum flow problem and some related reoptimization issues , 2007, Ann. Oper. Res..

[6]  S.,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .

[7]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[8]  S. N. Maheshwari,et al.  An O(|V|³) Algorithm for Finding Maximum Flows in Networks , 1978, Inf. Process. Lett..

[9]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[10]  Dorit S. Hochbaum,et al.  Performance Analysis and Best Implementations of Old and New Algorithms for the Open-Pit Mining Problem , 2000, Oper. Res..

[11]  H. Scarf,et al.  How to Compute Equilibrium Prices in 1891 , 2005 .

[12]  Jeff T. Linderoth,et al.  Reformulation and sampling to solve a stochastic network interdiction problem , 2008 .

[13]  J. C. Smith,et al.  Algorithms for discrete and continuous multicommodity flow network interdiction problems , 2007 .

[14]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[15]  Günther R. Raidl,et al.  The Multidimensional Knapsack Problem: Structure and Algorithms , 2010, INFORMS J. Comput..

[16]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[17]  Fernando Ordóñez,et al.  Robust capacity expansion of network flows , 2007, Networks.

[18]  Antonio Frangioni,et al.  A Computational Study of Cost Reoptimization for Min-Cost Flow Problems , 2006, INFORMS J. Comput..

[19]  Adnan Uygun Network Interdiction by Lagrandian Relaxation and Branch-and-Bound , 2002 .

[20]  Cynthia A. Phillips,et al.  The network inhibition problem , 1993, STOC.

[21]  Stein W. Wallace Investing in arcs in a network to maximize the expected max flow , 1987, Networks.

[22]  Jean-Charles Régin,et al.  A Filtering Algorithm for Constraints of Difference in CSPs , 1994, AAAI.

[23]  Qiong Cai,et al.  Profile-Guided Partial Redundancy Elimination Using Control Speculation: a Lifetime Optimal Algorithm and an Experimental Evaluation , 2022 .

[24]  Harold S. Stone,et al.  Multiprocessor Scheduling with the Aid of Network Flow Algorithms , 1977, IEEE Transactions on Software Engineering.

[25]  Alan W. McMasters,et al.  Optimal interdiction of a supply network , 1970 .

[26]  Andrew V. Goldberg,et al.  Augment or push: a computational study of bipartite matching and unit-capacity flow algorithms , 1998, JEAL.

[27]  Özlem Ergun,et al.  Rapidly Solving an Online Sequence of Maximum Flow Problems with Extensions to Computing Robust Minimum Cuts , 2008, CPAIOR.

[28]  Kurt Mehlhorn,et al.  An Analysis of the Highest-Level Selection Rule in the Preflow-Push Max-Flow , 1999, Inf. Process. Lett..

[29]  Robert Carr,et al.  Separating Clique Trees and Bipartition Inequalities Having a Fixed Number of Handles and Teeth in Polynomial Time , 1997, Math. Oper. Res..

[30]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[31]  Jens Vygen,et al.  The Book Review Column1 , 2020, SIGACT News.

[32]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[33]  Richard L. Church,et al.  Identifying Critical Infrastructure: The Median and Covering Facility Interdiction Problems , 2004 .

[34]  Alper Atamtürk,et al.  Two-Stage Robust Network Flow and Design Under Demand Uncertainty , 2007, Oper. Res..

[35]  Robert E. Tarjan,et al.  Balancing Applied to Maximum Network Flow Problems , 2006, ESA.

[36]  Andrew V. Goldberg,et al.  On Implementing Push-Relabel Method for the Maximum Flow Problem , 1995, IPCO.

[37]  Jens Knoop,et al.  A Fresh Look at Partial Redundancy Elimination as a Maximum Flow Problem , 2006, Softwaretechnik-Trends.

[38]  Rolf H. Möhring,et al.  Solving Project Scheduling Problems by Minimum Cut Computations , 2002, Manag. Sci..

[39]  Richard D. Wollmer,et al.  Investments in stochastic maximum flow networks , 1991, Ann. Oper. Res..

[40]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[41]  R. Kevin Wood,et al.  Deterministic network interdiction , 1993 .

[42]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[43]  Andrew V. Goldberg,et al.  Beyond the flow decomposition barrier , 1998, JACM.

[44]  T. E. Harris,et al.  Fundamentals of a Method for Evaluating Rail Net Capacities , 1955 .

[45]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[46]  Satoru Fujishige A maximum flow algorithm using MA ordering , 2003, Oper. Res. Lett..

[47]  Ravindra K. Ahuja,et al.  A Fast and Simple Algorithm for the Maximum Flow Problem , 2011, Oper. Res..

[48]  T. Santoso A stochastic programming approach for supply chain network design under uncertainty , 2004 .

[49]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[50]  N. Assimakopoulos,et al.  A network interdiction model for hospital infection control. , 1987, Computers in biology and medicine.

[51]  John Staples,et al.  The Maximum Flow Problem is Log Space Complete for P , 1982, Theor. Comput. Sci..

[52]  Yash P. Aneja,et al.  Maximal expected flow in a network subject to arc failures , 1980, Networks.

[53]  Maurice Queyranne,et al.  On the structure of all minimum cuts in a network and applications , 1982, Math. Program..

[54]  H. D. Derbes Efficiently Interdicting a Time-Expanded Transshipment Network. , 1997 .

[55]  E. A. Dinic Algorithm for solution of a problem of maximal flow in a network with power estimation , 1970 .

[56]  Takao Asano,et al.  RECENT DEVELOPMENTS IN MAXIMUM FLOW ALGORITHMS , 2000 .

[57]  Donglei Du,et al.  The maximum residual flow problem: NP-hardness with two-arc destruction , 2007 .

[58]  A. V. Karzanov,et al.  Determining the maximal flow in a network by the method of preflows , 1974 .

[59]  Frank Kelly,et al.  Charging and rate control for elastic traffic , 1997, Eur. Trans. Telecommun..

[60]  David Pisinger,et al.  A Minimal Algorithm for the 0-1 Knapsack Problem , 1997, Oper. Res..

[61]  Anne FINDING THE n MOST VITAL LINKS IN FLOW NETWORKS , 2022 .

[62]  Satoru Fujishige,et al.  PRACTICAL EFFICIENCY OF MAXIMUM FLOW ALGORITHMS USING MA ORDERINGS AND PREFLOWS , 2005 .

[63]  Gerald G. Brown,et al.  Defending Critical Infrastructure , 2006, Interfaces.

[64]  R. Carr,et al.  A Decomposition-Based Pseudoapproximation Algorithm for Network Flow Inhibition , 2003 .

[65]  Selim G. Akl,et al.  The maximum flow problem: a real-time approach , 2003, Parallel Comput..

[66]  Kees Roos,et al.  Modelling Some Robust Design Problems via Conic Optimization , 2006, OR.

[67]  Malachy Carey,et al.  Bounds on expected performance of networks with links subject to failure , 1984, Networks.

[68]  Joel Sokol,et al.  Optimal Protein Structure Alignment Using Maximum Cliques , 2005, Oper. Res..

[69]  Robert E. Tarjan,et al.  A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..

[70]  Nikhil R. Devanur,et al.  Market equilibrium via a primal--dual algorithm for a convex program , 2008, JACM.

[71]  David P. Morton,et al.  Stochastic Network Interdiction , 1998, Oper. Res..

[72]  Toshihide Ibaraki,et al.  Computing Edge-Connectivity in Multigraphs and Capacitated Graphs , 1992, SIAM J. Discret. Math..

[73]  Johannes O. Royset,et al.  Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem , 2007, INFORMS J. Comput..