HD 2685 b: a hot Jupiter orbiting an early F-type star detected by TESS

We report on the confirmation of a transiting giant planet around the relatively hot (Teff = 6801 ± 76 K) star HD 2685, whose transit signal was detected in Sector 1 data of NASA’s TESS mission. We confirmed the planetary nature of the transit signal using Doppler velocimetric measurements with CHIRON, CORALIE, and FEROS, as well as using photometric data obtained with the Chilean-Hungarian Automated Telescope and the Las Cumbres Observatory. From the joint analysis of photometry and radial velocities, we derived the following parameters for HD 2685 b: P = 4.12688−0.00004+0.00005 days, e = 0.091−0.047+0.039, MP = 1.17 ± 0.12 MJ, and RP =1.44 ± 0.05 RJ. This system is a typical example of an inflated transiting hot Jupiter in a low-eccentricity orbit. Based on the apparent visual magnitude (V = 9.6 mag) of the host star, this is one of the brightest known stars hosting a transiting hot Jupiter, and it is a good example of the upcoming systems that will be detected by TESS during the two-year primary mission. This is also an excellent target for future ground- and space-based atmospheric characterization as well as a good candidate for measuring the projected spin-orbit misalignment angle through the Rossiter–McLaughlin effect.

[1]  K. Rice,et al.  Protostars and Planets V , 2005 .

[2]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[3]  R. Brahm,et al.  ZASPE: A Code to Measure Stellar Atmospheric Parameters and their Covariance from Spectra , 2016, 1607.05792.

[4]  D. Apai,et al.  AN INCREASE IN THE MASS OF PLANETARY SYSTEMS AROUND LOWER-MASS STARS , 2015, 1510.02481.

[5]  Andrew Szentgyorgyi,et al.  A GROUND-BASED OPTICAL TRANSMISSION SPECTRUM OF WASP-6b , 2013, 1310.6048.

[6]  Avi Shporer The Astrophysics of Visible-light Orbital Phase Curves in the Space Age , 2017, 1703.00496.

[7]  J. Morse,et al.  A Comprehensive Study of Kepler Phase Curves and Secondary Eclipses: Temperatures and Albedos of Confirmed Kepler Giant Planets , 2014, 1404.4348.

[8]  Tidal decay of close planetary orbits , 1996, astro-ph/9605059.

[9]  Marco Bonati,et al.  CHIRON—A Fiber Fed Spectrometer for Precise Radial Velocities , 2013, 1309.3971.

[10]  R. Poole,et al.  FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY , 2013, 1302.3251.

[11]  R. Kurucz ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. , 1993 .

[12]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[13]  Daniel Foreman-Mackey,et al.  Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series , 2017, 1703.09710.

[14]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[15]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[16]  E. Paunzen A new catalogue of Stroemgren-Crawford uvbybeta photometry , 2015, 1506.04568.

[17]  D. Charbonneau,et al.  THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS , 2013, 1302.1647.

[18]  D. Apai,et al.  ACCESS: a featureless optical transmission spectrum for WASP-19b from Magellan/IMACS , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  Peter Tenenbaum,et al.  The TESS science processing operations center , 2016, Astronomical Telescopes + Instrumentation.

[20]  Tristan Guillot,et al.  Astronomy and Astrophysics Evolution of " 51 Peg B-like " Planets , 2001 .

[21]  M. C. Toribio,et al.  H i CONTENT AND OPTICAL PROPERTIES OF FIELD GALAXIES FROM THE ALFALFA SURVEY. I. SELECTION OF A CONTROL SAMPLE , 2011, 1103.0900.

[22]  R. Wittenmyer,et al.  An eccentric companion at the edge of the brown dwarf desert orbiting the 2.4 M⊙ giant star HIP 67537 , 2016, 1612.06252.

[23]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[24]  Christoph Mordasini,et al.  THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS , 2016, 1609.03019.

[25]  D. Bayliss,et al.  Stellar Obliquities and Planetary Alignments (SOPA). I. Spin–Orbit Measurements of Three Transiting Hot Jupiters: WASP-72b, WASP-100b, and WASP-109b , 2018, The Astronomical Journal.

[26]  Keivan G. Stassun,et al.  HD 202772A b: A Transiting Hot Jupiter around a Bright, Mildly Evolved Star in a Visual Binary Discovered by TESS , 2018, The Astronomical Journal.

[27]  K. von Braun,et al.  The NASA Exoplanet Archive: Data and Tools for Exoplanet Research , 2013, 1307.2944.

[28]  W. Kley,et al.  On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks , 2007, 0707.2225.

[29]  Sarah Blunt,et al.  RadVel: The Radial Velocity Modeling Toolkit , 2018, 1801.01947.

[30]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[31]  Nikku Madhusudhan,et al.  TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION , 2014, 1408.3668.

[32]  Towards Better Age Estimates for Stellar Populations : The Y 2 Isochrones for Solar Mixture , 2001 .

[33]  A. Jord'an,et al.  Limb darkening and exoplanets – II. Choosing the best law for optimal retrieval of transit parameters , 2016, 1601.05485.

[34]  J. Fortney,et al.  THE MASS–METALLICITY RELATION FOR GIANT PLANETS , 2015, 1511.07854.

[35]  S. G. Sousa,et al.  ARES v2 - new features and improved performance , 2015, 1504.02725.

[36]  Frederic A. Rasio,et al.  TIDAL EVOLUTION OF CLOSE-IN PLANETS , 2010, 1007.4785.

[37]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[38]  D. Kipping Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws , 2013, 1308.0009.

[39]  U. Padova,et al.  Search for water vapor in the high-resolution transmission spectrum of HD189733b in the visible , 2017, 1706.00027.

[40]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[41]  T. Henning,et al.  K2-232 b: a transiting warm Saturn on an eccentric P = 11.2 d orbit around a V = 9.9 star , 2018, 1802.08865.

[42]  H. Rix,et al.  The James Webb Space Telescope , 2006, astro-ph/0606175.

[43]  Howard Isaacson,et al.  THE MASS OF KOI-94d AND A RELATION FOR PLANET RADIUS, MASS, AND INCIDENT FLUX , 2013, 1303.2150.

[44]  John Asher Johnson,et al.  HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES , 2010, 1006.4161.

[45]  J. Jenkins,et al.  Study of the impact of the post-MS evolution of the host star on the orbits of close-in planets - I. Sample definition and physical properties , 2011, 1110.6459.

[46]  Rafael Brahm,et al.  CERES: A Set of Automated Routines for Echelle Spectra , 2016, 1609.02279.

[47]  D. Bayliss,et al.  K2-287 b: An Eccentric Warm Saturn Transiting a G-dwarf , 2018, The Astronomical Journal.

[48]  Joshua N. Winn,et al.  The Occurrence and Architecture of Exoplanetary Systems , 2014, 1410.4199.

[49]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[50]  L. Close,et al.  DISCOVERY AND VALIDATION OF A HIGH-DENSITY SUB-NEPTUNE FROM THE K2 MISSION , 2016, 1601.07608.

[51]  Sara Seager,et al.  THE OPTICAL AND NEAR-INFRARED TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ 1214b: FURTHER EVIDENCE FOR A METAL-RICH ATMOSPHERE , 2011, 1109.0582.

[52]  E. Agol,et al.  ATMOSPHERIC CHARACTERIZATION OF THE HOT JUPITER KEPLER-13Ab , 2014, 1403.6831.

[53]  Keivan G. Stassun,et al.  ASTROIMAGEJ: IMAGE PROCESSING AND PHOTOMETRIC EXTRACTION FOR ULTRA-PRECISE ASTRONOMICAL LIGHT CURVES , 2016, 1601.02622.

[54]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[55]  C. Sneden The nitrogen abundance of the very metal-poor star HD 122563. , 1973 .

[56]  D. Sasselov,et al.  EXPLORING THE HABITABLE ZONE FOR KEPLER PLANETARY CANDIDATES , 2011, 1105.0861.

[57]  Ray Jayawardhana,et al.  CHANGING PHASES OF ALIEN WORLDS: PROBING ATMOSPHERES OF KEPLER PLANETS WITH HIGH-PRECISION PHOTOMETRY , 2014, 1407.2245.

[58]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[59]  Sara Seager,et al.  ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY , 2012, 1203.4018.

[60]  L. Fossati,et al.  TESS’s first planet , 2018, Astronomy & Astrophysics.

[61]  D. W. Latham,et al.  HAT-P-32b AND HAT-P-33b: TWO HIGHLY INFLATED HOT JUPITERS TRANSITING HIGH-JITTER STARS , 2011, 1106.1212.

[62]  P. Tackley,et al.  Can we constrain the interior structure of rocky exoplanets from mass and radius measurements , 2015, 1502.03605.

[63]  Chelsea X. Huang,et al.  TESS Discovery of a Transiting Super-Earth in the pi Mensae System , 2018, The astrophysical journal. Letters.

[64]  D. Queloz,et al.  CHEOPS: A transit photometry mission for ESA's small mission programme , 2013, 1305.2270.

[65]  Miguel de Val-Borro,et al.  HATS-60b–HATS-69b: 10 Transiting Planets from HATSouth , 2018, The Astronomical Journal.

[66]  A. Tokovinin Ten Years of Speckle Interferometry at SOAR , 2018, 1801.04772.

[67]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[68]  B. Demory,et al.  UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS , 2013, 1309.5956.

[69]  J. Brewer,et al.  Stellar Spin–Orbit Alignment for Kepler-9, a Multi-transiting Planetary System with Two Outer Planets Near 2:1 Resonance , 2017, 1712.06409.

[70]  Roberto Baena Gallé,et al.  OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. I. INSTRUMENT DESCRIPTION AND FIRST RESULTS , 2009 .

[71]  Elisa V. Quintana,et al.  A Revised Exoplanet Yield from the Transiting Exoplanet Survey Satellite (TESS) , 2018, The Astrophysical Journal Supplement Series.

[72]  Keivan G. Stassun,et al.  Empirical Accurate Masses and Radii of Single Stars with TESS and Gaia , 2017, 1710.01460.

[73]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[74]  Antonio Claret,et al.  Detection of titanium oxide in the atmosphere of a hot Jupiter , 2017, Nature.