Graphical representations and cluster algorithms II 1

We continue the study, initiated in Part I, of graphical representations and cluster algorithms for various models in (or related to) statistical mechanics. For certain models, e.g. the Blume–Emery– Gri ths model and various generalizations, we develop Fortuin Kasteleyn-type representations which lead immediately to Swendsen Wang-type algorithms. For other models, e.g. the random cluster model, that are de ned by a graphical representation, we develop cluster algorithms without reference to an underlying spin system. In all cases, phase transitions are related to percolation (or incipient percolation) in the graphical representation which, via the IC algorithm, allows for the rapid simulation of these systems at the transition point. Pertinent examples include the (continuum) Widom–Rowlinson model, the restricted 1-step solid-on-solid model and the XY model. c © 1998 Published by Elsevier Science B.V. All rights reserved

[1]  G. Grimmett Potts models and random-cluster processes with many-body interactions , 1994 .

[2]  E. Domany,et al.  Phase diagram of the Z(5) model on a square lattice , 1980 .

[3]  J. Chayes,et al.  The correct extension of the Fortuin-Kasteleyn result to plaquette percolation , 1984 .

[4]  Wang,et al.  Antiferromagnetic Potts models. , 1989, Physical review letters.

[5]  L. Chayes Discontinuity of the Spin-Wave Stiffness in the Two-Dimensional XY Model , 1998 .

[6]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[7]  John S. Rowlinson,et al.  New Model for the Study of Liquid–Vapor Phase Transitions , 1970 .

[8]  Chayes,et al.  Intermediate phase for a classical continuum model. , 1996, Physical review. B, Condensed matter.

[9]  W. Klein Potts-model formulation of continuum percolation , 1982 .

[10]  Jonathan Machta,et al.  GRAPHICAL REPRESENTATIONS AND CLUSTER ALGORITHMS II , 1998 .

[11]  A. Patrascioiu,et al.  Phase structure of two-dimensional spin models and percolation , 1992 .

[12]  G. Giacomin,et al.  Agreement percolation and phase coexistence in some Gibbs systems , 1995 .

[13]  A. D. Sokal,et al.  Dynamic critical behavior of a Swendsen-Wang-Type algorithm for the Ashkin-Teller model , 1996 .

[14]  Osgood Condition,et al.  On a Generalization of the , 2000 .

[15]  Random-cluster representation of the ashkin-teller model , 1997, cond-mat/9704017.

[16]  M. Aizenman On the slow decay ofO(2) correlations in the absence of topological excitations: Remark on the Patrascioiu-Seiler model , 1994 .

[17]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[18]  Olle Häggström,et al.  Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes , 1999 .

[19]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[20]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[21]  J. Lebowitz,et al.  Inequalities for higher order Ising spins and for continuum fluids , 1972 .

[22]  J. Given,et al.  The kirkwood-salsburg equations for random continuum percolation , 1990 .

[23]  G. Grimmett,et al.  The random-cluster model on the complete graph , 1996 .

[24]  Kandel,et al.  General cluster Monte Carlo dynamics. , 1991, Physical review. B, Condensed matter.

[25]  V. Rivasseau Lieb's correlation inequality for plane rotors , 1980 .

[26]  Jonathan Machta,et al.  Graphical representations and cluster algorithms I. Discrete spin systems , 1997 .

[27]  A generalization of Poisson convergence to Gibbs convergence with applications to statistical mechanics , 1994 .

[28]  Chayes,et al.  Invaded cluster algorithm for Potts models. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  V. J. Emery,et al.  Ising Model for the ? Transition and Phase Separation in He^{3}-He^{4} Mixtures , 1971 .

[30]  Chayes,et al.  Invaded cluster algorithm for equilibrium critical points. , 1995, Physical review letters.

[31]  Olle Häggström,et al.  Phase transition in continuum Potts models , 1996 .

[32]  Cluster method for the Ashkin-Teller model. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  J. Chayes,et al.  Discontinuity of the magnetization in one-dimensional 1/¦x−y¦2 Ising and Potts models , 1988 .

[34]  Stochastic cluster algorithms for discrete gaussian (SOS) models , 1991 .

[35]  Newman,et al.  Wetting in a three-dimensional system: An exact solution. , 1988, Physical review letters.

[36]  Hasenbusch,et al.  Cluster algorithm for a solid-on-solid model with constraints. , 1992, Physical review. B, Condensed matter.

[37]  K. Alexander,et al.  Non-Perturbative Criteria for Gibbsian Uniqueness , 1997 .

[38]  H. Gould,et al.  Monte Carlo Study of the Widom-Rowlinson Fluid Using Cluster Methods , 1997, cond-mat/9704163.

[39]  Jennifer Chayes,et al.  The analysis of the Widom-Rowlinson model by stochastic geometric methods , 1995 .

[40]  S. Shlosman,et al.  Aggregation and intermediate phases in dilute spin systems , 1995 .