A billiards-like dynamical system for attacking chess pieces
暂无分享,去创建一个
[1] Thomas Zaslavsky,et al. A q-queens problem. VI. The bishops' period , 2019, Ars Math. Contemp..
[2] Benjamin Braun,et al. s-Lecture hall partitions, self-reciprocal polynomials, and Gorenstein cones , 2012, 1211.0258.
[3] David K. Campbell,et al. Piecewise linear models for the quasiperiodic transition to chaos. , 1995, Chaos.
[4] Thomas Zaslavsky,et al. A q-Queens Problem IV. Attacking configurations and their denominators , 2020, Discret. Math..
[5] Vladimir I. Arnold,et al. From Hilbert's Superposition Problem to Dynamical Systems , 2004, Am. Math. Mon..
[6] Thomas Zaslavsky,et al. Inside-out polytopes , 2003, math/0309330.
[7] E. Artin. Ein mechanisches system mit quasiergodischen bahnen , 1924 .
[8] A. Nogueira,et al. Chess Billiards , 2020, The Mathematical Intelligencer.
[9] H. Don. Polygons in billiard orbits , 2011, 1106.2030.
[10] Christopher R. H. Hanusa,et al. A $q$-Queens Problem. V. Some of Our Favorite Pieces: Queens, Bishops, Rooks, and Nightriders , 2016, 1609.00853.
[11] Thomas Zaslavsky,et al. A q-Queens Problem. I. General Theory , 2014, Electron. J. Comb..
[12] S. Tabachnikov,et al. Pseudo-Riemannian geodesics and billiards , 2006 .
[13] E. Gutkin. Billiard dynamics: an updated survey with the emphasis on open problems. , 2012, Chaos.
[14] George D. Birkhoff,et al. On the periodic motions of dynamical systems , 1927, Hamiltonian Dynamical Systems.
[15] E. Gutkin. Billiards in polygons: Survey of recent results , 1996 .
[16] H. Masur,et al. Chapter 13 Rational billiards and flat structures , 2002 .
[17] K. Mészáros,et al. Volumes and Ehrhart polynomials of flow polytopes , 2017, Mathematische Zeitschrift.
[18] D. Khmelev. Rational rotation numbers for homeomorphisms with several break-type singularities , 2005, Ergodic Theory and Dynamical Systems.
[19] V. Dragović,et al. Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics , 2011, 1108.4552.