Large-deviation asymptotics of condition numbers of random matrices

Abstract Let $\mathbf{X}$ be a $p\times n$ random matrix whose entries are independent and identically distributed real random variables with zero mean and unit variance. We study the limiting behaviors of the 2-normal condition number k(p,n) of $\mathbf{X}$ in terms of large deviations for large n, with p being fixed or $p=p(n)\rightarrow\infty$ with $p(n)=o(n)$ . We propose two main ingredients: (i) to relate the large-deviation probabilities of k(p,n) to those involving n independent and identically distributed random variables, which enables us to consider a quite general distribution of the entries (namely the sub-Gaussian distribution), and (ii) to control, for standard normal entries, the upper tail of k(p,n) using the upper tails of ratios of two independent $\chi^2$ random variables, which enables us to establish an application in statistical inference.

[1]  Robb J. Muirhead,et al.  Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[2]  M. Rudelson Invertibility of random matrices: norm of the inverse , 2005, math/0507024.

[3]  Alan Edelman,et al.  Tails of Condition Number Distributions , 2005, SIAM J. Matrix Anal. Appl..

[4]  K. Gustafson Antieigenvalue Analysis: With Applications to Numerical Analysis, Wavelets, Statistics, Quantum Mechanics, Finance and Optimization , 2011 .

[5]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[6]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[7]  J. W. Silverstein,et al.  A note on the largest eigenvalue of a large dimensional sample covariance matrix , 1988 .

[8]  Z. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[9]  Péter Kevei,et al.  A note on asymptotics of linear combinations of iid random variables , 2010, Period. Math. Hung..

[10]  Zizhong Chen,et al.  Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..

[11]  M. J. Klok,et al.  Large deviations for eigenvalues of sample covariance matrices, with applications to mobile communication systems , 2007, Advances in Applied Probability.

[12]  T. Tao,et al.  Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.

[13]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[14]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[15]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[16]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[17]  M. Rudelson,et al.  The smallest singular value of a random rectangular matrix , 2008, 0802.3956.

[18]  A. Litvak,et al.  Small Ball Probability for the Condition Number of Random Matrices , 2019, Lecture Notes in Mathematics.

[19]  D L Streiner,et al.  An Introduction to Multivariate Statistics , 1993, Canadian journal of psychiatry. Revue canadienne de psychiatrie.

[20]  C. A. Rogers Covering a sphere with spheres , 1963 .

[21]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[22]  T. Tao,et al.  Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.

[23]  M. Rudelson,et al.  Smallest singular value of random matrices and geometry of random polytopes , 2005 .

[24]  Danning Li,et al.  Approximation of Rectangular Beta-Laguerre Ensembles and Large Deviations , 2013, 1309.3882.

[25]  WILLIAM ANDERSON,et al.  The Exact Distribution of the Condition Number of a Gaussian Matrix , 2009, SIAM J. Matrix Anal. Appl..