Recent Advances in Facial Appearance Capture

Facial appearance capture is now firmly established within academic research and used extensively across various application domains, perhaps most prominently in the entertainment industry through the design of virtual characters in video games and films. While significant progress has occurred over the last two decades, no single survey currently exists that discusses the similarities, differences, and practical considerations of the available appearance capture techniques as applied to human faces. A central difficulty of facial appearance capture is the way light interacts with skin—which has a complex multi‐layered structure—and the interactions that occur below the skin surface can, by definition, only be observed indirectly. In this report, we distinguish between two broad strategies for dealing with this complexity. “Image‐based methods” try to exhaustively capture the exact face appearance under different lighting and viewing conditions, and then render the face through weighted image combinations. “Parametric methods” instead fit the captured reflectance data to some parametric appearance model used during rendering, allowing for a more lightweight and flexible representation but at the cost of potentially increased rendering complexity or inexact reproduction. The goal of this report is to provide an overview that can guide practitioners and researchers in assessing the tradeoffs between current approaches and identifying directions for future advances in facial appearance capture.

[1]  Andrew Gardner,et al.  A lighting reproduction approach to live-action compositing , 2002, SIGGRAPH.

[2]  Yasuyuki Matsushita,et al.  High-quality shape from multi-view stereo and shading under general illumination , 2011, CVPR 2011.

[3]  Wan-Chun Ma,et al.  Comprehensive Facial Performance Capture , 2011, Comput. Graph. Forum.

[4]  Paul Graham,et al.  Measurement‐Based Synthesis of Facial Microgeometry , 2012, SIGGRAPH '12.

[5]  John P. Lewis,et al.  Universal capture - image-based facial animation for "The Matrix Reloaded" , 2005, SIGGRAPH Courses.

[6]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[7]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[8]  John P. Lewis,et al.  Universal capture: image-based facial animation for "The Matrix Reloaded" , 2003, SIGGRAPH '03.

[9]  M. Gross,et al.  Analysis of human faces using a measurement-based skin reflectance model , 2006, ACM Trans. Graph..

[10]  Björn Stenger,et al.  Video Normals from Colored Lights , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[12]  Andrew Gardner,et al.  Simulating spatially varying lighting on a live performance , 2006 .

[13]  Diego Gutierrez,et al.  A Biophysically‐Based Model of the Optical Properties of Skin Aging , 2015, Comput. Graph. Forum.

[14]  Ira Kemelmacher-Shlizerman,et al.  Face reconstruction in the wild , 2011, 2011 International Conference on Computer Vision.

[15]  Thabo Beeler,et al.  High-quality single-shot capture of facial geometry , 2010, SIGGRAPH 2010.

[16]  Pieter Peers,et al.  Image-based separation of diffuse and specular reflections using environmental structured illumination , 2009, 2009 IEEE International Conference on Computational Photography (ICCP).

[17]  Per H. Christensen,et al.  Photon Beam Diffusion: A Hybrid Monte Carlo Method for Subsurface Scattering , 2013, Comput. Graph. Forum.

[18]  Paul A. Beardsley,et al.  High-quality passive facial performance capture using anchor frames , 2011, SIGGRAPH 2011.

[19]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1998 .

[20]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[21]  Pieter Peers,et al.  Facial performance synthesis using deformation-driven polynomial displacement maps , 2008, SIGGRAPH Asia '08.

[22]  Diego Gutierrez,et al.  A practical appearance model for dynamic facial color , 2010, ACM Trans. Graph..

[23]  Pieter Peers,et al.  Estimating Diffusion Parameters from Polarized Spherical-Gradient Illumination , 2012, IEEE Computer Graphics and Applications.

[24]  Hans-Peter Seidel,et al.  A kaleidoscopic approach to surround geometry and reflectance acquisition , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[25]  Paul E. Debevec,et al.  Multiview face capture using polarized spherical gradient illumination , 2011, ACM Trans. Graph..

[26]  Derek Bradley,et al.  Improved Reconstruction of Deforming Surfaces by Cancelling Ambient Occlusion , 2012, ECCV.

[27]  Steve Marschner,et al.  Modeling and Rendering for Realistic Facial Animation , 2000, Rendering Techniques.

[28]  Abhijeet Ghosh,et al.  Practical modeling and acquisition of layered facial reflectance , 2008, SIGGRAPH 2008.

[29]  Pat Hanrahan,et al.  An efficient representation for irradiance environment maps , 2001, SIGGRAPH.

[30]  Matthew O'Toole,et al.  A Basis Illumination Approach to BRDF Measurement , 2010, International Journal of Computer Vision.

[31]  Eric Enderton,et al.  Efficient Rendering of Human Skin , 2007 .

[32]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, SIGGRAPH 2011.

[33]  Henrik Wann Jensen,et al.  A rapid hierarchical rendering technique for translucent materials , 2005, SIGGRAPH Courses.

[34]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[35]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[36]  Andrew Jones,et al.  Relighting human locomotion with flowed reflectance fields , 2006, EGSR '06.

[37]  Jie Chen,et al.  Face detection under variable lighting based on resample by face relighting , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[38]  Henrik Wann Jensen,et al.  A rapid hierarchical rendering technique for translucent materials , 2005, ACM Trans. Graph..

[39]  Andrew Gardner,et al.  Animatable Facial Reflectance Fields , 2004 .

[40]  Matthew O'Toole,et al.  Primal-dual coding to probe light transport , 2012, ACM Trans. Graph..

[41]  Tim Weyrich,et al.  A layered, heterogeneous reflectance model for acquiring and rendering human skin , 2008, SIGGRAPH Asia '08.

[42]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[43]  Donald P. Greenberg,et al.  A comprehensive physical model for light reflection , 1991, SIGGRAPH.

[44]  Graham Fyffe,et al.  Single-shot photometric stereo by spectral multiplexing , 2010, 2011 IEEE International Conference on Computational Photography (ICCP).

[45]  Robert L. Stevenson,et al.  Estimation-theoretic approach to dynamic range enhancement using multiple exposures , 2003, J. Electronic Imaging.

[46]  Shree K. Nayar,et al.  Removal of specularities using color and polarization , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Hans-Peter Seidel,et al.  Computer‐Suggested Facial Makeup , 2011, Comput. Graph. Forum.

[48]  Pieter Peers,et al.  Practical modeling and acquisition of layered facial reflectance , 2008, SIGGRAPH Asia '08.

[49]  Pieter Peers,et al.  Post-production facial performance relighting using reflectance transfer , 2007, ACM Trans. Graph..

[50]  Peter Shirley,et al.  A microfacet-based BRDF generator , 2000, SIGGRAPH.

[51]  Wan-Chun Ma,et al.  The Digital Emily Project: Achieving a Photorealistic Digital Actor , 2010, IEEE Computer Graphics and Applications.

[52]  Paul E. Debevec,et al.  Practical Image-Based Relighting and Editing with Spherical-Harmonics and Local Lights , 2011, 2011 Conference for Visual Media Production.

[53]  Pierre Poulin,et al.  Linear efficient antialiased displacement and reflectance mapping , 2013, ACM Trans. Graph..

[54]  Yangang Wang,et al.  Online modeling for realtime facial animation , 2013, ACM Trans. Graph..

[55]  GhoshAbhijeet,et al.  Multiview face capture using polarized spherical gradient illumination , 2011 .

[56]  BradleyDerek,et al.  Recent Advances in Facial Appearance Capture , 2015 .

[57]  Eugene d'Eon A Better Dipole , 2012 .

[58]  Gladimir V. G. Baranoski,et al.  A Biophysically‐Based Spectral Model of Light Interaction with Human Skin , 2004, Comput. Graph. Forum.

[59]  Jihun Yu,et al.  Realtime facial animation with on-the-fly correctives , 2013, ACM Trans. Graph..

[60]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, ACM Trans. Graph..

[61]  Paul Graham,et al.  Acquiring reflectance and shape from continuous spherical harmonic illumination , 2013, ACM Trans. Graph..

[62]  Steve Marschner,et al.  A Survey on Hair Modeling: Styling, Simulation, and Rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[63]  Daniel Thalmann,et al.  Believable Virtual Characters in Human-Computer Dialogs , 2011, Eurographics.

[64]  Pieter Peers,et al.  Facial performance synthesis using deformation-driven polynomial displacement maps , 2008, SIGGRAPH 2008.

[65]  Julie Dorsey,et al.  Effic ient Re-rendering of Naturally Illuminated Environments , 1994 .

[66]  Christophe Hery Implementing a skin BSSRDF: (or several...) , 2005, SIGGRAPH Courses.

[67]  Amnon Shashua,et al.  The quotient image: Class based recognition and synthesis under varying illumination conditions , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[68]  Marc Olano,et al.  LEAN mapping , 2010, I3D '10.

[69]  Pieter Peers,et al.  Temporal upsampling of performance geometry using photometric alignment , 2010, TOGS.

[70]  Steve Marschner,et al.  Image-Based BRDF Measurement Including Human Skin , 1999, Rendering Techniques.

[71]  Henrik Wann Jensen,et al.  A spectral shading model for human skin , 2006, SIGGRAPH '06.

[72]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[73]  Noriko Kurachi The Magic of Computer Graphics , 2011 .

[74]  Andrew Gardner,et al.  Performance relighting and reflectance transformation with time-multiplexed illumination , 2005, ACM Trans. Graph..

[75]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[76]  Pieter Peers,et al.  Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination , 2007 .

[77]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[78]  Pieter Peers,et al.  Circularly polarized spherical illumination reflectometry , 2010, ACM Trans. Graph..

[79]  W. Heidrich,et al.  High resolution passive facial performance capture , 2010, ACM Trans. Graph..

[80]  Pieter Peers,et al.  Estimating Specular Roughness and Anisotropy from Second Order Spherical Gradient Illumination , 2009, Comput. Graph. Forum.

[81]  Fabrice Neyret,et al.  A Survey of Nonlinear Prefiltering Methods for Efficient and Accurate Surface Shading , 2012, IEEE Transactions on Visualization and Computer Graphics.

[82]  P. Ekman,et al.  Facial action coding system: a technique for the measurement of facial movement , 1978 .

[83]  Paul A. Beardsley,et al.  Coupled 3D reconstruction of sparse facial hair and skin , 2012, ACM Trans. Graph..

[84]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[85]  Pat Hanrahan,et al.  Reflection from layered surfaces due to subsurface scattering , 1993, SIGGRAPH.

[86]  Kun Zhou,et al.  Displaced dynamic expression regression for real-time facial tracking and animation , 2014, ACM Trans. Graph..

[87]  Paul E. Debevec,et al.  Digital ira and beyond: creating real-time photoreal digital actors , 2014, SIGGRAPH '14.

[88]  Derek Bradley,et al.  High-quality capture of eyes , 2014, ACM Trans. Graph..

[89]  Paul A. Beardsley,et al.  Image-based 3D photography using opacity hulls , 2002, ACM Trans. Graph..

[90]  Derek Nowrouzezahrai,et al.  State of the Art in Artistic Editing of Appearance, Lighting and Material , 2016, Comput. Graph. Forum.

[91]  V. Tuchin Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis , 2000 .

[92]  Ramesh Raskar,et al.  Fast separation of direct and global components of a scene using high frequency illumination , 2006, SIGGRAPH 2006.

[93]  Thabo Beeler,et al.  High-quality single-shot capture of facial geometry , 2010, ACM Trans. Graph..

[94]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[95]  Tim Weyrich,et al.  Mitsubishi Electric Research Laboratories , 2005 .

[96]  Xin Tong,et al.  Leveraging motion capture and 3D scanning for high-fidelity facial performance acquisition , 2011, ACM Trans. Graph..

[97]  Henrik Wann Jensen,et al.  Rendering translucent materials using photon diffusion , 2008, SIGGRAPH '08.

[98]  Greg Turk,et al.  Efficient Estimation of Spatially Varying Subsurface Scattering Parameters , 2006 .

[99]  Frédo Durand,et al.  Experimental analysis of BRDF models , 2005, EGSR '05.

[100]  Tim Weyrich,et al.  Principles of appearance acquisition and representation , 2007, SIGGRAPH '08.

[101]  Csaba Kelemen,et al.  A Microfacet Based Coupled Specular-Matte BRDF Model with Importance Sampling , 2001, Eurographics.

[102]  George Vogiatzis,et al.  Self-calibrated, Multi-spectral Photometric Stereo for 3D Face Capture , 2012, International Journal of Computer Vision.

[103]  Derek Nowrouzezahrai,et al.  State of the Art in Artistic Editing of Appearance, Lighting and Material , 2016, Comput. Graph. Forum.

[104]  Hans-Peter Seidel,et al.  Reflectance from images: a model-based approach for human faces , 2005, IEEE Transactions on Visualization and Computer Graphics.

[105]  Craig Donner,et al.  Light diffusion in multi-layered translucent materials , 2005, SIGGRAPH 2005.

[106]  Norimichi Tsumura,et al.  Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin , 2003, ACM Trans. Graph..

[107]  Derek Bradley,et al.  High-quality passive facial performance capture using anchor frames , 2011, ACM Trans. Graph..

[108]  Frédo Durand,et al.  Hair photobooth: geometric and photometric acquisition of real hairstyles , 2008, ACM Trans. Graph..

[109]  Athinodoros S. Georghiades,et al.  Recovering 3-D Shape and Reflectance From a Small Number of Photographs , 2003, Rendering Techniques.

[110]  Henrik Wann Jensen,et al.  A spectral BSSRDF for shading human skin , 2006, EGSR '06.

[111]  Nancy Argüelles,et al.  Author ' s , 2008 .

[112]  Jan J. Koenderink,et al.  The secret of velvety skin , 2003, Machine Vision and Applications.

[113]  Steve Marschner,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[114]  Luc Van Gool,et al.  Face/Off: live facial puppetry , 2009, SCA '09.

[115]  Christopher Schwartz,et al.  DOME II: A Parallelized BTF Acquisition System , 2013, Material Appearance Modeling.

[116]  Andrew Jones,et al.  Relighting human locomotion with flowed reflectance fields , 2006, EGSR '06.

[117]  Li Zhang,et al.  Spacetime faces: high resolution capture for modeling and animation , 2004, SIGGRAPH 2004.

[118]  Hans-Peter Seidel,et al.  Fast Face Detector Training Using Tailored Views , 2013, 2013 IEEE International Conference on Computer Vision.