A Common Framework for Complete and Incomplete Attitude Synchronization in Networks With Switching Topology

In this paper, we study attitude synchronization for elements in the unit sphere in <inline-formula><tex-math notation="LaTeX">$\mathbb {R}^{\scriptscriptstyle {\scriptscriptstyle {3}}}$</tex-math></inline-formula> and for elements in the three-dimensional (3-D) rotation group, for a network with switching topology. The agents’ angular velocities are assumed to be the control inputs, and a switching control law for each agent is devised that guarantees synchronization, provided that all elements are initially contained in a region, which we identify later in the paper. The control law is decentralized and it does not require a common orientation frame among all agents. We refer to synchronization of unit vectors in <inline-formula><tex-math notation="LaTeX">$\mathbb {R}^{\scriptscriptstyle {3}}$</tex-math></inline-formula> as incomplete synchronization, and of 3-D rotation matrices as complete synchronization. Our main contribution lies in showing that these two problems can be analyzed under a common framework, where all agents’ dynamics are transformed into unit vectors dynamics on a sphere of appropriate dimension.

[1]  Ali Jadbabaie,et al.  Distributed Geodesic Control Laws for Flocking of Nonholonomic Agents , 2007, IEEE Transactions on Automatic Control.

[2]  Hyo-Sung Ahn,et al.  Formation Control and Network Localization via Orientation Alignment , 2014, IEEE Transactions on Automatic Control.

[3]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[4]  Wei Li,et al.  Unified Cooperative Control of Multiple Agents on a Sphere for Different Spherical Patterns , 2014, IEEE Transactions on Automatic Control.

[5]  S. E. Tuna,et al.  Global synchronization on the circle , 2008 .

[6]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[7]  Alain Sarlette,et al.  Consensus Optimization on Manifolds , 2008, SIAM J. Control. Optim..

[8]  Manfredi Maggiore,et al.  State Agreement for Continuous-Time Coupled Nonlinear Systems , 2007, SIAM J. Control. Optim..

[9]  Abdelkader Abdessameud,et al.  Attitude Synchronization of a Group of Spacecraft Without Velocity Measurements , 2009, IEEE Transactions on Automatic Control.

[10]  Ricardo G. Sanfelice,et al.  Invariance principles for switching systems via hybrid systems techniques , 2008, Syst. Control. Lett..

[11]  Shihua Li,et al.  Attitude Synchronization for Flexible Spacecraft With Communication Delays , 2016, IEEE Transactions on Automatic Control.

[12]  Dimos V. Dimarogonas,et al.  Leader-follower cooperative attitude control of multiple rigid bodies , 2008, ACC.

[13]  R. Sepulchre,et al.  Synchronization on the circle , 2009, 0901.2408.

[14]  K.Y. Pettersen,et al.  Leader/Follower synchronization of satellite attitude without angular velocity measurements , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  Jan Tommy Gravdahl,et al.  Coordinated Attitude Control of Satellites in Formation , 2006 .

[16]  Ricardo G. Sanfelice,et al.  Invariance Principles for Hybrid Systems With Connections to Detectability and Asymptotic Stability , 2007, IEEE Transactions on Automatic Control.

[17]  René Vidal,et al.  Intrinsic consensus on SO(3) with almost-global convergence , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[18]  Florian Dörfler,et al.  Synchronization in complex networks of phase oscillators: A survey , 2014, Autom..

[19]  Masayuki Fujita,et al.  Passivity-Based Pose Synchronization in Three Dimensions , 2012, IEEE Transactions on Automatic Control.

[20]  L. Moreau,et al.  Stability of continuous-time distributed consensus algorithms , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[21]  Saptarshi Bandyopadhyay,et al.  Phase synchronization control of complex networks of Lagrangian systems on adaptive digraphs , 2013, Autom..

[22]  John T. Wen,et al.  Rigid body attitude coordination without inertial frame information , 2008, Autom..

[23]  José Luis Mancilla-Aguilar,et al.  An extension of LaSalle's invariance principle for switched systems , 2005, Syst. Control. Lett..

[24]  Shihua Li,et al.  Finite-Time Attitude Tracking Control of Spacecraft With Application to Attitude Synchronization , 2011, IEEE Transactions on Automatic Control.

[25]  Xiaoming Hu,et al.  Distributed attitude synchronization control of multi-agent systems with switching topologies , 2014, Autom..

[26]  R. Olfati-Saber,et al.  Swarms on Sphere: A Programmable Swarm with Synchronous Behaviors like Oscillator Networks , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[27]  Naomi Ehrich Leonard,et al.  Autonomous rigid body attitude synchronization , 2007, 2007 46th IEEE Conference on Decision and Control.

[28]  Randal W. Beard,et al.  Synchronized multiple spacecraft rotations , 2002, Autom..

[29]  Chao Zhai,et al.  A General Alignment Repulsion Algorithm for Flocking of Multi-Agent Systems , 2011, IEEE Transactions on Automatic Control.

[30]  Rodolphe Sepulchre,et al.  Consensus on nonlinear spaces , 2010, Annu. Rev. Control..

[31]  Ricardo G. Sanfelice,et al.  Quaternion-Based Hybrid Feedback for Robust Global Attitude Synchronization , 2012, IEEE Transactions on Automatic Control.

[32]  Xiaoming Hu,et al.  Consensus and formation control on SE(3) for switching topologies , 2015, Autom..

[33]  Derek A. Paley,et al.  Stabilization of collective motion on a sphere , 2009, Autom..

[34]  W. Ren Distributed attitude consensus among multiple networked spacecraft , 2006, 2006 American Control Conference.

[35]  Dimos V. Dimarogonas,et al.  Family of controllers for attitude synchronization on the sphere , 2015, Autom..

[36]  Dimos V. Dimarogonas,et al.  A common framework for attitude synchronization of unit vectors in networks with switching topology , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[37]  Xiaoming Hu,et al.  Local Lyapunov Functions for Consensus in Switching Nonlinear Systems , 2017, IEEE Transactions on Automatic Control.

[38]  Masayuki Fujita,et al.  Passivity-Based Attitude Synchronization in $SE(3)$ , 2009, IEEE Transactions on Control Systems Technology.