A Weakly Robust PTAS for Minimum Clique Partition in Unit Disk Graphs

We consider the problem of partitioning the set of vertices of a given unit disk graph (UDG) into a minimum number of cliques. The problem is NP-hard and various constant factor approximations are known, with the current best ratio of 3. Our main result is a {\em weakly robust} polynomial time approximation scheme (PTAS) for UDGs expressed with edge-lengths, it either (i) computes a clique partition or (ii) gives a certificate that the graph is not a UDG; for the case (i) that it computes a clique partition, we show that it is guaranteed to be within $(1+\eps)$ ratio of the optimum if the input is UDG; however if the input is not a UDG it either computes a clique partition as in case (i) with no guarantee on the quality of the clique partition or detects that it is not a UDG. Noting that recognition of UDG's is NP-hard even if we are given edge lengths, our PTAS is a weakly-robust algorithm. Our algorithm can be transformed into an $O(\frac{\log^* n}{\eps^{O(1)}})$ time distributed PTAS. We consider a weighted version of the clique partition problem on vertex weighted UDGs that generalizes the problem. We note some key distinctions with the unweighted version, where ideas useful in obtaining a PTAS breakdown. Yet, surprisingly, it admits a $(2+\eps)$-approximation algorithm for the weighted case where the graph is expressed, say, as an adjacency matrix. This improves on the best known 8-approximation for the {\em unweighted} case for UDGs expressed in standard form.

[1]  Maurice Queyranne,et al.  Clique partitioning of interval graphs with submodular costs on the cliques , 2007, RAIRO Oper. Res..

[2]  David Zuckerman Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number , 2007, Theory Comput..

[3]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[4]  Milan Ruzic,et al.  Uniform deterministic dictionaries , 2008, TALG.

[5]  Imran A. Pirwani,et al.  A PTAS for Minimum Clique Partition in Unit Disk Graphs , 2009, ArXiv.

[6]  Leonid Barenboim,et al.  Distributed (δ+1)-coloring in linear (in δ) time , 2009, STOC '09.

[7]  Imran A. Pirwani,et al.  Topology Control and Geographic Routing in Realistic Wireless Networks , 2008, Ad Hoc Sens. Wirel. Networks.

[8]  Roger Wattenhofer,et al.  Local approximation schemes for ad hoc and sensor networks , 2005, DIALM-POMC '05.

[9]  Gerhard J. Woeginger,et al.  Geometric Clusterings , 1991, J. Algorithms.

[10]  János Pach,et al.  Minimum Clique Partition in Unit Disk Graphs , 2009, Graphs Comb..

[11]  Roger Wattenhofer,et al.  A log-star distributed maximal independent set algorithm for growth-bounded graphs , 2008, PODC '08.

[12]  Imran A. Pirwani,et al.  Energy conservation via domatic partitions , 2006, MobiHoc '06.

[13]  Sergiy Butenko,et al.  Optimization Problems in Unit-Disk Graphs , 2009, Encyclopedia of Optimization.

[14]  Imran A. Pirwani,et al.  A Weakly Robust PTAS for Minimum Clique Partition in Unit Disk Graphs , 2009, Algorithmica.

[15]  Thomas Erlebach,et al.  Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Disk Graphs , 2006, APPROX-RANDOM.

[16]  Jeremy P. Spinrad,et al.  Robust algorithms for restricted domains , 2001, SODA '01.

[17]  Bruce A. Reed,et al.  Partition into cliques for cubic graphs: Planar case, complexity and approximation , 2008, Discret. Appl. Math..

[18]  Roger Wattenhofer,et al.  On the complexity of distributed graph coloring , 2006, PODC '06.

[19]  Luérbio Faria,et al.  On minimum clique partition and maximum independent set on unit disk graphs and penny graphs: complexity and approximation , 2004, Electron. Notes Discret. Math..

[20]  Sriram V. Pemmaraju,et al.  Approximation Algorithms for Domatic Partitions of Unit Disk Graphs , 2009, APPROX-RANDOM.

[21]  Sriram V. Pemmaraju,et al.  Finding Facilities Fast , 2009, ICDCN.

[22]  Gerd Finke,et al.  Batch processing with interval graph compatibilities between tasks , 2005, Discret. Appl. Math..

[23]  Johann Hurink,et al.  Approximation schemes for wireless networks , 2008, TALG.

[24]  Imran A. Pirwani,et al.  Good Quality Virtual Realization of Unit Ball Graphs , 2007, ESA.

[25]  James Aspnes,et al.  On the Computational Complexity of Sensor Network Localization , 2004, ALGOSENSORS.