Operation of graphene quantum Hall resistance standard in a cryogen-free table-top system

We demonstrate quantum Hall resistance measurements with metrological accuracy in a small cryogen-free system operating at a temperature of around 3.8K and magnetic fields below 5T. Operating this system requires little experimental knowledge or laboratory infrastructure, thereby greatly advancing the proliferation of primary quantum standards for precision electrical metrology. This significant advance in technology has come about as a result of the unique properties of epitaxial graphene on SiC.

[1]  R. Yakimova,et al.  A prototype of RK/200 quantum Hall array resistance standard on epitaxial graphene , 2015 .

[2]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[3]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[4]  Y. Shen Self-Focusing and Filaments of Light: Past and Present , 2009 .

[5]  Blaise Jeanneret,et al.  The quantum Hall effect as an electrical resistance standard , 2001 .

[6]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[7]  R. Yakimova,et al.  Low contact resistance in epitaxial graphene devices for quantum metrology , 2015 .

[8]  Ernest Houtzager,et al.  An automated cryogenic current comparator resistance ratio bridge for routine resistance measurements , 2010 .

[9]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[10]  S. Novikov,et al.  Towards a Graphene-Based Quantum Impedance Standard , 2014 .

[11]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[12]  J. M. Williams,et al.  Graphene, universality of the quantum Hall effect and redefinition of the SI system , 2011 .

[13]  B. Jeckelmann,et al.  Revised technical guidelines for reliable dc measurements of the quantized Hall resistance , 2003 .

[14]  G. Rietveld,et al.  Quantum resistance metrology in graphene , 2008, 0810.4064.

[15]  T. Chassagne,et al.  Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide , 2014, Nature Communications.

[16]  C. Berger,et al.  Half integer quantum Hall effect in high mobility single layer epitaxial graphene , 2009, 0909.2903.

[17]  Quantum resistance standard accuracy close to the zero-dissipation state , 2013, 1301.5241.

[18]  M. Nagase,et al.  Half-Integer Quantum Hall Effect in Gate-Controlled Epitaxial Graphene Devices , 2010 .

[19]  V. Fal’ko,et al.  Charge transfer between epitaxial graphene and silicon carbide , 2010, 1007.4340.

[20]  Michael Krieger,et al.  Bottom-gated epitaxial graphene. , 2011, Nature materials.

[21]  Tobias Bergsten,et al.  Tuning carrier density across Dirac point in epitaxial graphene on SiC by corona discharge , 2014 .

[22]  Mikael Syväjärvi,et al.  Towards a quantum resistance standard based on epitaxial graphene. , 2010, Nature nanotechnology.

[23]  S. Novikov,et al.  Precision quantum Hall resistance measurement on epitaxial graphene device in low magnetic field , 2013, 1308.0456.

[24]  R. Yakimova,et al.  Phase space for the breakdown of the quantum Hall effect in epitaxial graphene. , 2013, 1304.4897.

[25]  R. Yakimova,et al.  Anomalously strong pinning of the filling factor nu=2 in epitaxial graphene , 2010, 1009.3450.

[26]  R. Yakimova,et al.  Precision comparison of the quantum Hall effect in graphene and gallium arsenide , 2012, 1202.2985.

[27]  Mikael Syväjärvi,et al.  Homogeneous large-area graphene layer growth on 6H-SiC(0001) , 2008 .

[28]  T. Shen,et al.  Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001) , 2009, 0908.3822.

[29]  Alexander Tzalenchuk,et al.  Non‐Volatile Photochemical Gating of an Epitaxial Graphene/Polymer Heterostructure , 2011, Advanced materials.