Bounded Arithmetic, Proof Complexity and Two Papers of Parikh

Abstract This article surveys R. Parikh's work on feasibility, bounded arithmetic and the complexity of proofs. We discuss in depth two of Parikh's papers on these subjects and some of the subsequent progress in the areas of feasible arithmetic and lengths of proofs.

[1]  Vladimir Yu. Sazonov,et al.  A Logical Approach to the Problem "P=NP?" , 1980, MFCS.

[2]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[3]  Warren D. Goldfarb,et al.  The Undecidability of the Second-Order Unification Problem , 1981, Theor. Comput. Sci..

[4]  Franco Montagna,et al.  Provable Fixed Points , 1988, Math. Log. Q..

[5]  Jeff B. Paris,et al.  On the scheme of induction for bounded arithmetic formulas , 1987, Ann. Pure Appl. Log..

[6]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[7]  Jan Krajícek,et al.  On the Number of Steps in Proofs , 1989, Annals of Pure and Applied Logic.

[8]  Pavel Pudlák,et al.  Cuts, consistency statements and interpretations , 1985, Journal of Symbolic Logic.

[9]  Stephen A. Cook,et al.  Feasibly constructive proofs and the propositional calculus (Preliminary Version) , 1975, STOC.

[10]  A theorem on the formalized arithmetic with function symbols 0 and , 1977 .

[11]  Daniel Richardson Sets of Theorems with Short Proofs , 1974, J. Symb. Log..

[12]  V. P. Orevkov Complexity of Proofs and Their Transformations in Axiomatic Theories , 1993 .

[13]  Leszek Pacholski,et al.  Model theory of algebra and arithmetic , 1980 .

[14]  Rohit Parikh Some results on the length of proofs , 1973 .

[15]  Jacques Herbrand Recherches sur la théorie de la démonstration , 1930 .

[16]  William M. Farmer,et al.  A unification algorithm for second-order monadic terms , 1988, Ann. Pure Appl. Log..

[17]  Shavrukov,et al.  Subalgebras of Diagonalizable Algebras of Theories Containing Arithmetic , 1993 .

[18]  On the length of proofs in a formal system of recursive arithmetic , 1981 .

[19]  Alessandra Carbone,et al.  Much shorter proofs: A bimodal investigation , 1990, Math. Log. Q..

[20]  外史 竹内 Bounded Arithmetic と計算量の根本問題 , 1996 .

[21]  Jan Kraj mIček On the number of steps in proofs , 1989 .

[22]  John W. Dawson,et al.  Ergebnisse eines Mathematischen Kolloquiums , 1998 .

[23]  Tsuyoshi Yukami A note on a formalized arithmetic with function symbols ' and + , 1978 .

[24]  Keith Harrow The Bounded Arithmetic Hierarchy , 1978, Inf. Control..

[25]  Jan Krajícek,et al.  The number of proof lines and the size of proofs in first order logic , 1988, Arch. Math. Log..

[26]  A. Wilkie,et al.  Counting problems in bounded arithmetic , 1985 .

[27]  Tohru Miyatake On the length of proofs in a formal systems , 1980 .

[28]  Komitet Redakcyjny,et al.  DISSERTATIONES MATHEMATICAE (ROZPRAWY MATEMATYCZNE) , 1990 .

[29]  Samuel R. Buss,et al.  On Gödel's theorems on lengths of proofs I: Number of lines and speedup for arithmetics , 1994, Journal of Symbolic Logic.

[30]  Akiko Kino,et al.  Intuitionism and Proof Theory , 1970 .

[31]  Stefan Bauer-Mengelberg,et al.  Über die Länge yon Beweisen , 1990 .

[32]  P. Clote,et al.  Arithmetic, proof theory, and computational complexity , 1993 .

[33]  Alessandra Carbone Provable Fixed Points in I Δ0 + Ω1 , 1991, Notre Dame J. Formal Log..

[34]  Vladimir Yu. Sazonov On Existence of Complete Predicate Calculus in Metamathematics without Exponentiation , 1981, MFCS.

[35]  Albert G. Dragálin Correctness of inconsistent theories with notions of feasibility , 1984, Symposium on Computation Theory.

[36]  A. J. Wilkie,et al.  Applications of complexity theory to Σo-definability Problems in arithmetic , 1980 .

[37]  R. Smullyan Theory of formal systems , 1962 .

[38]  William M. Farmer A Unification-Theoretic Method for Investigating the k-Provability Problem , 1991, Ann. Pure Appl. Log..

[39]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[40]  Samuel R. Buss,et al.  The Undecidability of k-Provability , 1991, Ann. Pure Appl. Log..

[41]  Richard J. Lipton,et al.  Model theoretic aspects of computational complexity , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[42]  Celia Wrathall,et al.  Rudimentary Predicates and Relative Computation , 1978, SIAM J. Comput..

[43]  A. S. Yessenin-Volpin,et al.  The Ultra-Intuitionistic Criticism and the Antitraditional Program for Foundations of Mathematics , 1970 .

[44]  Rohit Parikh,et al.  Existence and feasibility in arithmetic , 1971, Journal of Symbolic Logic.