Inventory management of spare parts in an energy company

We address the problem of how to determine control parameters for the inventory of spare parts of an energy company. The prevailing policy is based on an (s, S) system subject to a fill rate constraint. The parameters are decided based mainly on the expert judgment of the planners at different plants. The company is pursuing to conform all planners to the same approach, and to be more cost efficient. Our work focuses on supporting these goals. We test seven demand models using real-world data for about 21 000 items. We find that significant differences in cost and service level may appear from using one or another model. We propose a decision rule to select an appropriate model. Our approach allows us to recommend control parameters for 97.9% of the items. We also explore the impact of pooling inventory for different demand sources and the inaccuracy arising from duplicate item codes.

[1]  M. Z. Babai,et al.  On the demand distributions of spare parts , 2012 .

[2]  David F. Pyke,et al.  Inventory management and production planning and scheduling , 1998 .

[3]  Paul R. Kleindorfer,et al.  Near-Optimal Service Constrained Stocking Policies for Spare Parts , 1989, Oper. Res..

[4]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[5]  Craig C. Sherbrooke,et al.  Optimal Inventory Modeling of Systems: Multi-Echelon Techniques (INTL SERIES IN OPERATIONS RESEARCH & MANAGEMENT SCIENCE) , 1992 .

[6]  Karen Donohue,et al.  A Threshold Inventory Rationing Policy for Service - Differentiated Demand Classes , 2003, Manag. Sci..

[7]  Aris A. Syntetos,et al.  MODELLING SPARE PARTS' DEMAND: AN EMPIRICAL INVESTIGATION , 2010 .

[8]  W. J. Kennedy,et al.  An overview of recent literature on spare parts inventories , 2002 .

[9]  Aris A. Syntetos,et al.  Classification for forecasting and stock control: a case study , 2008, J. Oper. Res. Soc..

[10]  T. Willemain,et al.  A new approach to forecasting intermittent demand for service parts inventories , 2004 .

[11]  R. Dekker,et al.  A spare parts stocking policy based on equipment criticality , 1998 .

[12]  Dmitry Krass,et al.  Inventory models with minimal service level constraints , 2001, Eur. J. Oper. Res..

[13]  Ralph D. Snyder,et al.  Control of inventories with intermittent demand , 1989 .

[14]  Helmut Schneider,et al.  Power approximation for computing ( s , S ) policies using service level , 1990 .

[15]  A. Bacchetti,et al.  Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice , 2012 .

[16]  Patrik Alfredsson,et al.  Modeling emergency supply flexibility in a two-echelon inventory system , 1999 .

[17]  Anil Kukreja,et al.  A model for lumpy demand parts in a multi-location inventory system with transshipments , 2005, Comput. Oper. Res..

[18]  Awi Federgruen,et al.  An Efficient Algorithm for Computing Optimal (s, S) Policies , 1984, Oper. Res..

[19]  Elgar Fleisch,et al.  Inventory Inaccuracy and Supply Chain Performance: A Simulation Study of a Retail Supply Chain , 2005 .

[20]  Henk Tijms,et al.  Simple approximations for the reorder point in periodic and continuous review (s, S) inventory systems with service level constraints , 1984 .

[21]  R. Ehrhardt The Power Approximation for Computing (s, S) Inventory Policies , 1979 .

[22]  Roberto Verganti,et al.  Inventory management in a multi-echelon spare parts supply chain , 2003 .

[23]  Alexandre Dolgui,et al.  On the performance of binomial and beta-binomial models of demand forecasting for multiple slow-moving inventory items , 2008, Comput. Oper. Res..

[24]  T. A. Burgin,et al.  The Gamma Distribution and Inventory Control , 1975 .

[25]  L.W.G. Strijbosch,et al.  Exact fill rates for (R, s, S) inventory control with gamma distributed demand , 2002, J. Oper. Res. Soc..

[26]  Brian G. Kingsman,et al.  Forecasting for the ordering and stock-holding of spare parts , 2004, J. Oper. Res. Soc..

[27]  A. A. Kranenburg,et al.  A new partial pooling structure for spare parts networks , 2009, Eur. J. Oper. Res..

[28]  Sofia Panagiotidou,et al.  Inventory management of multiple items with irregular demand: A case study , 2010, Eur. J. Oper. Res..

[29]  Rommert Dekker,et al.  An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods , 2008, Eur. J. Oper. Res..

[30]  Dirk Cattrysse,et al.  Multi-item spare parts systems with lateral transshipments and waiting time constraints , 2006, Eur. J. Oper. Res..

[31]  Thomas W. Archibald,et al.  Modelling replenishment and transshipment decisions in periodic review multilocation inventory systems , 2007, J. Oper. Res. Soc..

[32]  Thomas H. Wonnacott,et al.  Introductory Statistics , 2007, Technometrics.

[33]  John A. Muckstadt,et al.  Analysis and Algorithms for Service Parts Supply Chains , 2008 .

[34]  Paul R. Kleindorfer,et al.  Service Constrained s, S Inventory Systems with Priority Demand Classes and Lost Sales , 1988 .

[35]  Leo W. G. Strijbosch,et al.  A combined forecast—inventory control procedure for spare parts , 2000, J. Oper. Res. Soc..

[36]  J. Boylan,et al.  On the stock control performance of intermittent demand estimators , 2006 .

[37]  M. Z. Babai,et al.  Demand categorisation in a European spare parts logistics network , 2009 .

[38]  Marco Slikker,et al.  Spare parts inventory pooling games , 2009 .

[39]  Adel A. Ghobbar,et al.  Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model , 2003, Comput. Oper. Res..

[40]  Paul R. Kleindorfer,et al.  Optimizer: IBM's Multi-Echelon Inventory System for Managing Service Logistics , 1990 .

[41]  Ann Vereecke,et al.  An inventory management model for an inventory consisting of lumpy items, slow movers and fast movers , 1994 .

[42]  J. D. Croston Forecasting and Stock Control for Intermittent Demands , 1972 .

[43]  M. Slikker,et al.  Inventory pooling games for expensive, low‐demand spare parts , 2012 .

[44]  D. Cattrysse,et al.  Cost allocation in spare parts inventory pooling , 2007 .

[45]  A. F. Veinott,et al.  Computing Optimal (s, S) Inventory Policies , 1965 .

[46]  M. Fu,et al.  Optimization of( s, S ) inventory systems with random lead times and a service level constraint , 1998 .

[47]  Linus Schrage,et al.  Retail Inventory Management When Records Are Inaccurate , 2008, Manuf. Serv. Oper. Manag..

[48]  Stephen C. Graves,et al.  A Multi-Echelon Inventory Model for a Repairable Item with One-for-One Replenishment , 1985 .

[49]  Ralph D. Snyder,et al.  Inventory control with the gamma probability distribution , 1984 .

[50]  Eugenia Babiloni,et al.  On the exact calculation of the fill rate in a periodic review inventory policy under discrete demand patterns , 2012, Eur. J. Oper. Res..

[51]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .