Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis.

NH2-MIL-125(Ti) has been post-synthetically functionalized with dye-like molecular fragments. The new material (methyl red-MIL-125(Ti)) exhibits improved light absorption over a wide range of the visible spectrum, and shows enhanced photocatalytic oxidation activity under visible light illumination. The consequences of functionalization and the bottlenecks in MOF photochemistry are studied in detail.

[1]  T. Chinnusamy,et al.  Comprehensive Organic Synthesis II , 2014 .

[2]  Aron Walsh,et al.  Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. , 2013, Journal of the American Chemical Society.

[3]  T. Savenije,et al.  What Limits Photoconductance in Anatase TiO2 Nanostructures? A Real and Imaginary Microwave Conductance Study , 2013 .

[4]  Dongmei Jiang,et al.  Synthesis and post-synthetic modification of MIL-101(Cr)-NH2 via a tandem diazotisation process. , 2012, Chemical communications.

[5]  H. García,et al.  Evidence of photoinduced charge separation in the metal-organic framework MIL-125(Ti)-NH2. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  Cheng Wang,et al.  Metal–Organic Frameworks for Light Harvesting and Photocatalysis , 2012 .

[7]  Yangen Zhou,et al.  Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. , 2012, Chemical communications.

[8]  Masakazu Saito,et al.  Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework , 2012 .

[9]  M. A. Moreira,et al.  Effect of ethylbenzene in p-xylene selectivity of the porous titanium amino terephthalate MIL-125(Ti)_NH2 , 2012 .

[10]  Seth M. Cohen,et al.  Discovery, development, and functionalization of Zr(IV)-based metal–organic frameworks , 2012 .

[11]  Freek Kapteijn,et al.  Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives , 2012 .

[12]  Freek Kapteijn,et al.  Highly dispersed platinum in metal organic framework NH2-MIL-101(Al) containing phosphotungstic acid – Characterization and catalytic performance , 2012 .

[13]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[14]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[15]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[16]  Demin Liu,et al.  Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. , 2011, Accounts of chemical research.

[17]  Zhigang Xie,et al.  Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. , 2011, Journal of the American Chemical Society.

[18]  J. Moulijn,et al.  Combined ATR-FTIR and DFT Study of Cyclohexanone Adsorption on Hydrated TiO2 Anatase Surfaces , 2011 .

[19]  Freek Kapteijn,et al.  Unraveling the Optoelectronic and Photochemical Behavior of Zn4O-Based Metal Organic Frameworks , 2011 .

[20]  Avelino Corma,et al.  Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. , 2010, Chemistry.

[21]  A. Walsh,et al.  Photostimulated reduction processes in a titania hybrid metal-organic framework. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  M. Azuma,et al.  Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation , 2009 .

[23]  Gérard Férey,et al.  A new photoactive crystalline highly porous titanium(IV) dicarboxylate. , 2009, Journal of the American Chemical Society.

[24]  Vincenzo Barone,et al.  Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases , 2009, J. Comput. Chem..

[25]  Gerard P M van Klink,et al.  Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. , 2008, ChemSusChem.

[26]  T. Savenije,et al.  Charge carrier dynamics in TiO2 nanoparticles at various temperatures , 2008 .

[27]  Frank E. Osterloh,et al.  Heterogeneous Photocatalysis , 2021 .

[28]  G J Lee,et al.  Photophysical properties and photoisomerization processes of Methyl Red embedded in rigid polymer. , 1995, Applied optics.

[29]  Nevill Mott,et al.  ON THE TRANSITION TO METALLIC CONDUCTION IN SEMICONDUCTORS , 1956 .

[30]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .