Monte Carlo calculation of the surface tension for two- and three-dimensional lattice-gas models
暂无分享,去创建一个
It is suggested that the interface free energy between bulk phases with a macroscopically flat interface can be estimated from the variation of certain probability distribution functions of finite blocks with block size. For a liquid-gas system the probability distribution of the density would have to be used. The method is particularly suitable for the critical region where other methods are hard to apply. As a test case, the two-dimensional lattice-gas model is treated and it is shown that already, from rather small blocks, one obtains results consistent with the exact soluion of Onsager for the surface tension, by performing appropriate extrapolations. The surface tension of the three-dimensional lattice-gas model is also estimated and found to be reasonably consistent with the expected critical behavior. The universal amplitude of the surface tension of fluids near their critical point is estimated and shown to be in significantly better agreement with experimental data than the results of Fisk and Widom and the first-order 4-d renormalization-group expansion. Also the universal amplitude ratio used in nucleation theory near the critical point is estimated.