Identification of BING-4 Cancer Antigen Translated From an Alternative Open Reading Frame of a Gene in the Extended MHC Class II Region Using Lymphocytes From a Patient With a Durable Complete Regression Following Immunotherapy

Multiple human cancer Ags have been identified, although little is known concerning which would be most effectively used in cancer immunotherapy. To gain insight into the selection of appropriate Ags, the immunologic reactivity of a patient who had a durable complete regression of melanoma metastases was measured. PBMCs were directly cloned using the monoclonal anti-CD3 Ab OKT3 and IL-2 without any bias introduced by previous culture. A lymphocyte clone recognized a previously unknown shared melanoma Ag that was identified as the BING-4 protein encoded in a gene-rich region of the extended class II MHC. The HLA-A2-restricted BING-4 immunodominant peptide was translated from a 10-aa-long alternative open reading frame. In vitro sensitization against this peptide generated lymphocytes reactive against HLA-A2+ melanomas. Real-time semiquantitative RT-PCR analysis revealed that 8 of 15 melanoma cell lines overexpressed BING-4, and this correlated with recognition by lymphocytes. Overexpression was not found in normal tissues or other tumor types. Thus, BING-4 represents another candidate Ag for possible use in the immunotherapy of patients with melanoma.

[1]  Steven A. Rosenberg,et al.  Progress in human tumour immunology and immunotherapy , 2001, Nature.

[2]  S. Rosenberg,et al.  CD4+ T cell recognition of MHC class II-restricted epitopes from NY-ESO-1 presented by a prevalent HLA DP4 allele: Association with NY-ESO-1 antibody production , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  L. Walter,et al.  Physical mapping and evolution of the centromeric class I gene-containing region of the rat MHC , 2000, Immunogenetics.

[4]  S Beck,et al.  Gene organisation, sequence variation and isochore structure at the centromeric boundary of the human MHC. , 1999, Journal of molecular biology.

[5]  S. Rosenberg,et al.  Antitumor immunization with a minimal peptide epitope (G9-209-2M) leads to a functionally heterogeneous CTL response. , 1999, Journal of immunotherapy.

[6]  F. Marincola,et al.  Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. , 1998, Journal of the National Cancer Institute.

[7]  S. Rosenberg,et al.  A breast and melanoma-shared tumor antigen: T cell responses to antigenic peptides translated from different open reading frames. , 1998, Journal of immunology.

[8]  S. Beck,et al.  TAPASIN, DAXX, RGL2, HKE2 and four new genes (BING 1, 3 to 5) form a dense cluster at the centromeric end of the MHC. , 1998, Journal of molecular biology.

[9]  J. Sgouros,et al.  Genomic analysis of the Tapasin gene, located close to the TAP loci in the MHC , 1998, European journal of immunology.

[10]  D. Jäger,et al.  Simultaneous Humoral and Cellular Immune Response against Cancer–Testis Antigen NY-ESO-1: Definition of Human Histocompatibility Leukocyte Antigen (HLA)-A2–binding Peptide Epitopes , 1998, The Journal of experimental medicine.

[11]  A Sette,et al.  Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. , 1996, Journal of immunology.

[12]  M. Salgaller,et al.  Differential anti-MART-1/MelanA CTL activity in peripheral blood of HLA-A2 melanoma patients in comparison to healthy donors: evidence of in vivo priming by tumor cells. , 1996, Journal of immunotherapy with emphasis on tumor immunology : official journal of the Society for Biological Therapy.

[13]  S. Rosenberg,et al.  Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen , 1996, The Journal of experimental medicine.

[14]  S. Rosenberg,et al.  Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. , 1994, Journal of the National Cancer Institute.

[15]  K. Sakaguchi,et al.  Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes , 1994, The Journal of experimental medicine.

[16]  S. Rosenberg,et al.  Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Riddell,et al.  Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. , 1992, Science.