An efficient proposal distribution for Metropolis-Hastings using a B-splines technique

In this paper, we proposed an efficient proposal distribution in the Metropolis-Hastings algorithm using the B -spline proposal Metropolis-Hastings algorithm. This new method can be extended to high-dimensional cases, such as the B -spline proposal in Gibbs sampling and in the Hit-and-Run (BSPHR) algorithm. It improves the proposal distribution in the Metropolis-Hastings algorithm by carrying more information from the target function. The performance of BSPHR was compared with that of other Markov Chain Monte Carlo (MCMC) samplers in simulation and real data examples. Simulation results show that the new method performs significantly better than other MCMC methods.

[1]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[2]  R. Carroll,et al.  Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples , 2010 .

[3]  W. Gilks,et al.  Adaptive Rejection Metropolis Sampling Within Gibbs Sampling , 1995 .

[4]  Charles J. Geyer Computation for the Introduction to MCMC Chapter of Handbook of Markov Chain Monte Carlo , 2010 .

[5]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[6]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[7]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[8]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[9]  B. Schmeiser,et al.  Performance of the Gibbs, Hit-and-Run, and Metropolis Samplers , 1993 .

[10]  Rudolph E. Langer,et al.  On Numerical Approximation , 1959 .

[11]  Xiao-Li Meng,et al.  Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage , 2000 .

[12]  R. Tweedie,et al.  Exponential Convergence of Langevin Diiusions and Their Discrete Approximations , 1997 .

[13]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[14]  M. Tanner Tools for statistical inference: methods for the exploration of posterior distributions and likeliho , 1994 .

[15]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[16]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[17]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[18]  C. Geyer,et al.  Discussion: Markov Chains for Exploring Posterior Distributions , 1994 .

[19]  James E. Gentle,et al.  Elements of computational statistics , 2002 .

[20]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[21]  Giovanni Petris,et al.  An R Package for Dynamic Linear Models , 2010 .

[22]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[23]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[24]  R. Kass Nonlinear Regression Analysis and its Applications , 1990 .

[25]  W. Gilks,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 1992 .

[26]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[27]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[28]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[29]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .