Molecular recognition in thylakoid structure and function.

In photosynthesis, light-harvesting chlorophyll molecules are shunted between photosystems by phosphorylation of the protein to which they are bound. An anchor for the phosphorylated chlorophyll-protein complex has now been identified in the reaction centre of chloroplast photosystem I. This finding supports the idea that molecular recognition, not membrane surface charge, governs the architecture of the chloroplast thylakoid membrane. We describe a model for the chloroplast thylakoid membrane that is consistent with recent structural data that specify the relative dimensions of intrinsic protein complexes and their dispositions within the membrane. Control of molecular recognition accommodates membrane stacking, lateral heterogeneity and regulation of light-harvesting function by means of protein phosphorylation during state transitions--adaptations that compensate for selective excitation of photosystem I or photosystem II. High-resolution structural description of membrane protein-protein interactions is now required to understand thylakoid structure and regulation of photosynthesis.

[1]  K. Steinback,et al.  Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems , 1981, Nature.

[2]  H. Heldt,et al.  Plant biochemistry and molecular biology , 1997 .

[3]  J. Allen Protein phosphorylation — Carburettor of photosynthesis? , 1983 .

[4]  A. Melis,et al.  Regulation of photosystem stoichiometry, chlorophyll a and chlorophyll b content and relation to chloroplast ultrastructure , 1981 .

[5]  Petra Fromme,et al.  Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution , 2001, Nature.

[6]  Jan M. Anderson Consequences of spatial separation of photosystem 1 and 2 in thylakoid membranes of higher plant chloroplasts , 1981 .

[7]  W. Junge ATP synthase and other motor proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. BENNETT,et al.  Phosphorylation of chloroplast membrane polypeptides , 1977, Nature.

[9]  O. Schwartz,et al.  Confocal microscopy of thylakoid autofluorescence in relation to origin of grana and phylogeny in the green algae , 1999 .

[10]  W. Wooster,et al.  Crystal structure of , 2005 .

[11]  R. Hill,et al.  Function of the Two Cytochrome Components in Chloroplasts: A Working Hypothesis , 1960, Nature.

[12]  J. Allen How does protein phosphorylation regulate photosynthesis? , 1992, Trends in biochemical sciences.

[13]  R. Ellis,et al.  Effect of Mg2+ on excitation energy transfer between LHC II and LHC I in a chlorophyll‐protein complex , 1987 .

[14]  C. Moorehead All rights reserved , 1997 .

[15]  M. Harrison,et al.  Protein phosphorylation and Mg2+ influence light harvesting and electron transport in chloroplast thylakoid membrane material containing only the chlorophyll-a/b-binding light-harvesting complex of photosystem II and photosystem I. , 1992, European journal of biochemistry.

[16]  J. Allen,et al.  Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. , 1993, Journal of theoretical biology.

[17]  J. Myers,et al.  Fluorescence and oxygen evolution from Chlorella pyrenoidosa. , 1969, Biochimica et biophysica acta.

[18]  P. Albertsson,et al.  The domain organization of the plant thylakoid membrane , 1990, FEBS letters.

[19]  Lester Packer,et al.  Current topics in bioenergetics , 1966 .

[20]  C. Arntzen,et al.  Effects of cations upon chloroplast membrane subunit. Interactions and excitation energy distribution. , 1976, Biochimica et biophysica acta.

[21]  C. Mullineaux,et al.  Mobility of photosynthetic complexes in thylakoid membranes , 1997, Nature.

[22]  J. Findlay,et al.  Amino acid composition of the 9 kDa phosphoprotein of pea thylakoids. , 1986, Biochemical and biophysical research communications.

[23]  H. Stefánsson,et al.  Photosystem II in different parts of the thylakoid membrane: a functional comparison between different domains. , 2000, Biochemistry.

[24]  Jan M. Anderson Distribution of the cytochromes of spinach chloroplasts between the appressed membranes of grana stacks and stroma‐exposed thylakoid regions , 1982 .

[25]  L. Staehelin,et al.  Spatial relationship of photosystem I, photosystem II, and the light- harvesting complex in chloroplast membranes , 1977, The Journal of cell biology.

[26]  Petra Fromme,et al.  Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution , 2001, Nature.

[27]  D. Kyle,et al.  Thylakoid membrane protein phosphorylation leads to a decrease in connectivity between Photosystem II reaction centers , 1982 .

[28]  B. Andersson,et al.  Isolation of photosystem II enriched membrane vesicles from spinach chloroplasts by phase partition. , 1976, Biochimica et biophysica acta.

[29]  C. Larsson,et al.  Differential phosphorylation of the light‐harvesting chlorophyll—protein complex in appressed and non‐appressed regions of the thylakoid membrane , 1982 .

[30]  M. Sussman,et al.  Mass Spectrometric Resolution of Reversible Protein Phosphorylation in Photosynthetic Membranes ofArabidopsis thaliana* , 2001, The Journal of Biological Chemistry.

[31]  Yoshinori Fujiyoshi,et al.  Atomic Model of Plant Light‐Harvesting Complex by Electron Crystallography. , 1994 .

[32]  C. Sundby,et al.  A model for the topology of the chloroplast thylakoid membrane , 1999 .

[33]  H. Scheller,et al.  The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis , 2000, Nature.

[34]  P. Horton,et al.  Allosteric regulation of the light-harvesting system of photosystem II. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[35]  N. Isaacs,et al.  A model for the photosynthetic apparatus of purple bacteria , 1996 .

[36]  J. Allen,et al.  Protein phosphorylation in regulation of photosynthesis. , 1992, Biochimica et biophysica acta.

[37]  J. Whitelegge,et al.  Isolation and Characterization of a Novel Xanthophyll-rich Pigment-protein complex from Spinach. , 1998 .

[38]  G Büldt,et al.  Atomic force microscopy of native purple membrane. , 2000, Biochimica et biophysica acta.

[39]  L. Staehelin,et al.  Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components , 1983, The Journal of cell biology.

[40]  Wilhelm Gruissem,et al.  Biochemistry & Molecular Biology of Plants , 2002 .

[41]  G. Feher,et al.  Current Research in Photosynthesis , 1990, Springer Netherlands.

[42]  N. Murata,et al.  Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. , 1969, Biochimica et biophysica acta.

[43]  Jan M. Anderson The grana margins of plant thylakoid membranes , 1989 .

[44]  N. Isaacs,et al.  The structure and function of the LH2 (B800-850) complex from the purple photosynthetic bacterium Rhodopseudomonas acidophila strain 10050. , 1997, Progress in biophysics and molecular biology.

[45]  J. Burke,et al.  Involvement of the light-harvesting complex in cation regulation of excitation energy distribution in chloroplasts. , 1978, Archives of biochemistry and biophysics.

[46]  J. Bennett Regulation of photosynthesis by reversible phosphorylation of the light-harvesting chlorophyll a/b protein. , 1983, The Biochemical journal.

[47]  John F. Allen,et al.  How does Protein Phosphorylation Control Protein-Protein Interactions in the Photosynthetic Membrane? , 1990 .

[48]  J. Anderson,et al.  Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. , 1980, Biochimica et biophysica acta.

[49]  H. L. Race,et al.  A protein tyrosine kinase of chloroplast thylakoid membranes phosphorylates light harvesting complex II proteins. , 1998, Biochemical and biophysical research communications.

[50]  V. Sarafis,et al.  Thylakoid membrane architecture , 1999 .

[51]  J. Barber,et al.  An explanation for the relationship between salt‐induced thylakoid stacking and the chlorophyll fluorescence changes associated with changes in spillover of energy from photosystem II to photosystem I , 1980 .

[52]  J. Amesz,et al.  Function and identification of two photochemical systems in photosynthesis , 1962 .

[53]  J Deisenhofer,et al.  Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. , 1989, The EMBO journal.

[54]  J. Barber Influence of Surface Charges on Thylakoid Structure and Function , 1982 .

[55]  G. Garab,et al.  Photosynthesis: Mechanisms and Effects , 1998, Springer Netherlands.

[56]  L. Staehelin,et al.  Effects of ions and gravity forces on the supramolecular organization and excitation energy distribution in chloroplast membranes. , 2008, Ciba Foundation symposium.

[57]  John F. Allen,et al.  Protein phosphorylation in chromatophores from Rhodospirillum rubrum , 1988 .

[58]  Sung-Hou Kim,et al.  Electron transfer by domain movement in cytochrome bc1 , 1998, Nature.

[59]  W. Kühlbrandt,et al.  Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. , 1999, Biochemistry.

[60]  P. Sane,et al.  Distribution of function and structure in chloroplast lamellae , 1971 .

[61]  P. Fromme,et al.  Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system , 1996, Nature Structural Biology.

[62]  H. Michel,et al.  Tandem mass spectrometry reveals that three photosystem II proteins of spinach chloroplasts contain N-acetyl-O-phosphothreonine at their NH2 termini. , 1988, The Journal of biological chemistry.

[63]  A. Nilsson,et al.  Photosynthetic control of chloroplast gene expression , 1999, Nature.

[64]  T. Pfannschmidt,et al.  Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  J. Barber Energy transfer and its dependence on membrane properties. , 1978, Ciba Foundation symposium.

[66]  J. Gray,et al.  The gene for the 10 kDa phosphoprotein of photosystem II is located in chloroplast DNA , 1986 .

[67]  J Deisenhofer,et al.  Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. , 1997, Science.

[68]  P. Fromme,et al.  Photosystem I of Synechococcus elongatus at 4 A resolution: comprehensive structure analysis. , 1997, Journal of molecular biology.

[69]  W. Martin,et al.  Why have organelles retained genomes? , 1999, Trends in genetics : TIG.

[70]  G. Finazzi,et al.  State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. , 1999, Biochimica et biophysica acta.

[71]  L. Staehelin,et al.  Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation energy distribution in higher plants. , 1983, Archives of biochemistry and biophysics.

[72]  S. Forsén,et al.  Phosphorylation Controls the Three-dimensional Structure of Plant Light Harvesting Complex II* , 1997, The Journal of Biological Chemistry.

[73]  J. Myers Enhancement Studies in Photosynthesis , 1971 .

[74]  J. Anderson,et al.  Photoregulation of the Composition, Function, and Structure of Thylakoid Membranes , 1986 .

[75]  J. Anderson,et al.  Composition of the photosystems and chloroplast structure in extreme shade plants. , 1973, Biochimica et biophysica acta.

[76]  B. Andersson,et al.  The architecture of photosynthetic membranes: lateral and transverse organization , 1982 .

[77]  John F. Allen,et al.  Truncated recombinant light harvesting complex II proteins are substrates for a protein kinase associated with photosystem II core complexes , 1998, FEBS letters.

[78]  M. Grunberg‐Manago,et al.  Techniques and New Developments in Photosynthesis Research , 1989, NATO ASI Series.

[79]  J. Hinshaw,et al.  A Novel Method for the Visualization of Outer Surfaces from Stacked Regions of Thylakoid Membranes , 1989 .

[80]  W. Kühlbrandt Structure and function of the plant light-harvesting complex, LHC-II , 1994 .