First Experiments with PowerPlay

[1]  Peter Dayan,et al.  Exploration from Generalization Mediated by Multiple Controllers , 2013, Intrinsically Motivated Learning in Natural and Artificial Systems.

[2]  Pierre-Yves Oudeyer,et al.  Intrinsically Motivated Learning of Real-World Sensorimotor Skills with Developmental Constraints , 2013, Intrinsically Motivated Learning in Natural and Artificial Systems.

[3]  Jürgen Schmidhuber,et al.  PowerPlay: Training an Increasingly General Problem Solver by Continually Searching for the Simplest Still Unsolvable Problem , 2011, Front. Psychol..

[4]  Andrew G. Barto,et al.  Intrinsic Motivation and Reinforcement Learning , 2013, Intrinsically Motivated Learning in Natural and Artificial Systems.

[5]  T. Martin McGinnity,et al.  Novelty Detection as an Intrinsic Motivation for Cumulative Learning Robots , 2013, Intrinsically Motivated Learning in Natural and Artificial Systems.

[6]  Jürgen Schmidhuber,et al.  Continually adding self-invented problems to the repertoire: First experiments with POWERPLAY , 2012, 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL).

[7]  Jürgen Schmidhuber,et al.  Self-Delimiting Neural Networks , 2012, ArXiv.

[8]  Ring Mark,et al.  Compression Progress-Based Curiosity Drive for Developmental Learning , 2011 .

[9]  Jürgen Schmidhuber,et al.  Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990–2010) , 2010, IEEE Transactions on Autonomous Mental Development.

[10]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[11]  Jürgen Schmidhuber,et al.  Optimal Artificial Curiosity, Creativity, Music, and the Fine Arts , 2005 .

[12]  Jürgen Schmidhuber,et al.  Optimal Ordered Problem Solver , 2002, Machine Learning.

[13]  Jürgen Schmidhuber,et al.  Shifting Inductive Bias with Success-Story Algorithm, Adaptive Levin Search, and Incremental Self-Improvement , 1997, Machine Learning.

[14]  Jürgen Schmidhuber,et al.  Exploring the predictable , 2003 .

[15]  後藤 滋樹 20世紀の名著名論:A.M.Turing: On Computable Numbers with an Application to the Entscheidungsproblem , 2002 .

[16]  Jürgen Schmidhuber,et al.  Bias-Optimal Incremental Problem Solving , 2002, NIPS.

[17]  Jürgen Schmidhuber,et al.  Artificial curiosity based on discovering novel algorithmic predictability through coevolution , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[18]  Doina Precup,et al.  Intra-Option Learning about Temporally Abstract Actions , 1998, ICML.

[19]  Jürgen Schmidhuber,et al.  HQ-Learning , 1997, Adapt. Behav..

[20]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[21]  S. Hochreiter,et al.  REINFORCEMENT DRIVEN INFORMATION ACQUISITION IN NONDETERMINISTIC ENVIRONMENTS , 1995 .

[22]  Jürgen Schmidhuber,et al.  Curious model-building control systems , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[23]  Jürgen Schmidhuber,et al.  Dynamische neuronale Netze und das fundamentale raumzeitliche Lernproblem , 1990 .

[24]  Jürgen Schmidhuber,et al.  A local learning algorithm for dynamic feedforward and recurrent networks , 1990, Forschungsberichte, TU Munich.

[25]  G. Chaitin A Theory of Program Size Formally Identical to Information Theory , 1975, JACM.

[26]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[27]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[28]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[29]  J. Piaget The child's construction of reality , 1954 .

[30]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[31]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .