On the complexity of ℍ-coloring for special oriented trees

Abstract For a fixed digraph H , the H -coloring problem is the problem of deciding whether a given input digraph G admits a homomorphism to H . The CSP dichotomy conjecture of Feder and Vardi is equivalent to proving that, for any H , the H -coloring problem is in P or NP-complete. We confirm this dichotomy for a certain class of oriented trees, which we call special trees (generalizing earlier results on special triads and polyads). Moreover, we prove that every tractable special oriented tree has bounded width, i.e., the corresponding H -coloring problem is solvable by local consistency checking. Our proof relies on recent algebraic tools, namely characterization of congruence meet-semidistributivity via pointing operations and absorption theory.

[1]  Tomás Feder Classification of Homomorphisms to Oriented Cycles and of k-Partite Satisfiability , 2001, SIAM J. Discret. Math..

[2]  Gábor Kun,et al.  Constraints, MMSNP and expander relational structures , 2007, Combinatorica.

[3]  Pawel M. Idziak,et al.  Tractability and learnability arising from algebras with few subpowers , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[4]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[5]  M. Maróti,et al.  Existence theorems for weakly symmetric operations , 2008 .

[6]  Libor Barto,et al.  Robust satisfiability of constraint satisfaction problems , 2012, STOC '12.

[7]  L. Barto,et al.  Mal’tsev conditions, lack of absorption, and solvability , 2015 .

[8]  Libor Barto,et al.  Constraint Satisfaction Problems of Bounded Width , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[9]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[10]  Libor Barto,et al.  CSP dichotomy for special triads , 2009 .

[11]  Pavol Hell,et al.  On multiplicative graphs and the product conjecture , 1988, Comb..

[12]  Binbin Chen,et al.  The Cost of Fault Tolerance in Multi-Party Communication Complexity , 2014, J. ACM.

[13]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[14]  Todd Niven,et al.  On the Reduction of the CSP Dichotomy Conjecture to Digraphs , 2013, CP.

[15]  Jaroslav Nesetril,et al.  Complexity of Tree Homomorphisms , 1996, Discret. Appl. Math..

[16]  B. Larose Algebra and the Complexity of Digraph CSPs: a Survey , 2017 .

[17]  Xuding Zhu,et al.  Duality and Polynomial Testing of Tree Homomorphisms , 1996 .

[18]  Todd Niven,et al.  A finer reduction of constraint problems to digraphs , 2014, Log. Methods Comput. Sci..

[19]  Libor Barto,et al.  The Dichotomy for Conservative Constraint Satisfaction Problems Revisited , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[20]  R. McKenzie,et al.  Varieties with few subalgebras of powers , 2009 .

[21]  Libor Barto,et al.  Absorption in Universal Algebra and CSP. , 2017 .

[22]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[23]  B. Larose,et al.  Bounded width problems and algebras , 2007 .

[24]  Libor Barto,et al.  Csp Dichotomy for Special Polyads , 2013, Int. J. Algebra Comput..

[25]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[26]  Libor Barto,et al.  Constraint Satisfaction Problems Solvable by Local Consistency Methods , 2014, JACM.

[27]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[28]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[29]  Libor Barto,et al.  The CSP Dichotomy Holds for Digraphs with No Sources and No Sinks (A Positive Answer to a Conjecture of Bang-Jensen and Hell) , 2008, SIAM J. Comput..

[30]  Neil Immerman,et al.  The Complexity of Satisfiability Problems: Refining Schaefer's Theorem , 2005, MFCS.

[31]  Andrei A. Bulatov,et al.  Recent Results on the Algebraic Approach to the CSP , 2008, Complexity of Constraints.

[32]  Libor Barto,et al.  Absorbing Subalgebras, Cyclic Terms, and the Constraint Satisfaction Problem , 2012, Log. Methods Comput. Sci..

[33]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[34]  Gerhard J. Woeginger,et al.  Polynomial Graph-Colorings , 1989, STACS.

[35]  Pascal Tesson,et al.  Universal algebra and hardness results for constraint satisfaction problems , 2009, Theor. Comput. Sci..