Scale properties of microscale convection in the marine surface layer

We analyze the scale distribution of coherent water vapor structures in the marine atmospheric boundary layer as measured by a shipboard Raman lidar during the Combined Sensor Program (March 1996) using a two-dimensional continuous wavelet transform. Coherent structures in the lidar measured water vapor concentration field correspond to locations where covariance with the wavelet is a local extremum. Scales of the significant structures are identified using a filtered wavelet variance (detection density) derived from 24 “images” in a horizontal plane. A dominant radius of 14 m is identified using complimentary approaches to the analysis.

[1]  Larry Mahrt,et al.  An Adaptive Decomposition: Application to Turbulence , 1994 .

[2]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[3]  Alain Arneodo,et al.  Wavelet Transform Analysis of Invariant Measures of Some Dynamical Systems , 1989 .

[4]  Brani Vidakovic,et al.  The partitioning of attached and detached eddy motion in the atmospheric surface layer using Lorentz wavelet filtering , 1996 .

[5]  G. Dunteman Principal Components Analysis , 1989 .

[6]  R. A. Antonia,et al.  Rough-Wall Turbulent Boundary Layers , 1991 .

[7]  J. Turner,et al.  Buoyancy Effects in Fluids , 1973 .

[8]  Serge Collineau,et al.  Wavelet Analysis of Diurnal and Nocturnal Turbulence Above a Maize Crop , 1994 .

[9]  Ephraim M Sparrow,et al.  Observations and other characteristics of thermals , 1970, Journal of Fluid Mechanics.

[10]  William E. Eichinger,et al.  High-resolution properties of the Equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations , 1996 .

[11]  William E. Eichinger,et al.  Initial investigations of microscale cellular convection in an equatorial marine atmospheric boundary layer revealed by lidar , 1997 .

[12]  H. Bergström,et al.  Turbulent exchange above a pine forest II. Organized structures , 1989 .

[13]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[14]  N. Gamage,et al.  Applications of Structure Preserving Wavelet Decompositions to Intermittent Turbulence: A Case Study , 1994 .

[15]  E. F. Bradley,et al.  Bulk parameterization of air‐sea fluxes for Tropical Ocean‐Global Atmosphere Coupled‐Ocean Atmosphere Response Experiment , 1996 .

[16]  N. E. Huang,et al.  A 2-D complex wavelet analysis of an unsteady wind-generated surface wave field , 1993 .

[17]  N. Gamage,et al.  Detection and Analysis of Microfronts and Associated Coherent Events Using Localized Transforms , 1993 .

[18]  Carl Hagelberg,et al.  Thin-line detection in meteorological radar images using wavelet transforms , 1995 .

[19]  James G. Brasseur,et al.  Three-Dimensional Buoyancy- and Shear-Induced Local Structure of the Atmospheric Boundary Layer , 1998 .

[20]  P. Frenzen and Experimental Study of Cellular Convection in Rotating Fluids , 1954 .

[21]  D. I. Cooper,et al.  The Combined Sensor Program: An Air-Sea Science Mission in the Central and Western Pacific Ocean , 1997 .

[22]  C. R. Quick,et al.  Development of a scanning, solar-blind, water Raman lidar. , 1994, Applied optics.

[23]  N. Gamage,et al.  Structure-preserving wavelet decompositions of intermittent turbulence , 1994 .

[24]  Serge Collineau,et al.  Detection of turbulent coherent motions in a forest canopy part I: Wavelet analysis , 1993 .

[25]  D. Lenschow,et al.  The role of thermals in the convective boundary layer , 1980 .

[26]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[27]  Wavelets and Wavelet Packets to Analyze, Filter, and Compress Two-Dimensional Turbulent Flows, , 1993 .