Efficient modelling necessitates standards for model documentation and exchange.

In this paper, problems related to simulation model documentation and model exchange between users are discussed. Complex simulation models have gained popularity in the environmental field, but require extensive documentation to allow independent implementation. The existence of different simulation platforms puts high demands on the quality of the original documentation. Recent experiences from cross-platform implementations with the ASM2d and ADM1 models reveal that error-free model documentation is difficult to obtain, and as a consequence, considerable time is spent on searching for documentation and implementation errors of various sources. As such, the list of errors and coding pitfalls provided for ASM2d and ADM1 in this paper is vital information for any future implementation of both models. The time needed to obtain an error-free model implementation can be significantly reduced if a standard language for model documentation and exchange is adopted. The extensible markup language (XML) and languages based on this format may provide a remedy to the problem of platform independent model documentation and exchange. In this paper the possibility to apply this to environmental models is discussed, whereas the practical model implementation examples corroborate the necessity for a standardised approach.

[1]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[2]  P. Reichert AQUASIM-a tool for simulation and data analysis of aquatic systems , 1994 .

[3]  H. Siegrist,et al.  The IWA Anaerobic Digestion Model No 1 (ADM1). , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[4]  Mogens Henze,et al.  Activated Sludge Model No.2d, ASM2D , 1999 .

[5]  Irini Angelidaki,et al.  Anaerobic digestion model No. 1 (ADM1) , 2002 .

[6]  P A Vanrolleghem,et al.  Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs. , 2006, Water science and technology : a journal of the International Association on Water Pollution Research.

[7]  I. Takács A dynamic model of the clarification-thickening process , 1991 .

[8]  P A Vanrolleghem,et al.  Towards a common benchmark for long-term process control and monitoring performance evaluation. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[9]  Sylvie Gillot,et al.  The COST Simulation Benchmark: Description and Simulator Manual , 2001 .

[10]  Mogens Henze,et al.  Activated sludge models ASM1, ASM2, ASM2d and ASM3 , 2015 .

[11]  P. Reichert,et al.  River water quality model No. 1 , 2001 .