An Olfactory Circuit Increases the Fidelity of Visual Behavior

Multimodal integration allows neural circuits to be activated in a behaviorally context-specific manner. In the case of odor plume tracking by Drosophila, an attractive odorant increases the influence of yaw-optic flow on steering behavior in flight, which enhances visual stability reflexes, resulting in straighter flight trajectories within an odor plume. However, it is not well understood whether context-specific changes in optomotor behavior are the result of an increased sensitivity to motion inputs (e.g., through increased visual attention) or direct scaling of motor outputs (i.e., increased steering gain). We address this question by examining the optomotor behavior of Drosophila melanogaster in a tethered flight assay and demonstrate that whereas olfactory cues decrease the gain of the optomotor response to sideslip optic flow, they concomitantly increase the gain of the yaw optomotor response by enhancing the animal's ability to follow transient visual perturbations. Furthermore, ablating the mushroom bodies (MBs) of the fly brain via larval hydroxyurea (HU) treatment results in a loss of olfaction-dependent increase in yaw optomotor fidelity. By expressing either tetanus toxin light chain or diphtheria toxin in gal4-defined neural circuits, we were able to replicate the loss of function observed in the HU treatment within the lines expressing broadly in the mushroom bodies, but not within specific mushroom body lobes. Finally, we were able to genetically separate the yaw responses and sideslip responses in our behavioral assay. Together, our results implicate the MBs in a fast-acting, memory-independent olfactory modification of a visual reflex that is critical for flight control.

[1]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[2]  M. Dickinson,et al.  Free-flight responses of Drosophila melanogaster to attractive odors , 2006, Journal of Experimental Biology.

[3]  A. Borst,et al.  Fly motion vision. , 2010, Annual review of neuroscience.

[4]  A. Borst,et al.  Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron , 2006, Nature Neuroscience.

[5]  J. Dubnau,et al.  Deconstructing Memory in Drosophila , 2005, Current Biology.

[6]  M. S. Tu,et al.  The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina) , 1996, Journal of Comparative Physiology A.

[7]  Bruno van Swinderen,et al.  Shared Visual Attention and Memory Systems in the Drosophila Brain , 2009, PloS one.

[8]  F. MacWilliams,et al.  Pseudo-random sequences and arrays , 1976, Proceedings of the IEEE.

[9]  Ralph J Greenspan,et al.  Salience modulates 20–30 Hz brain activity in Drosophila , 2003, Nature Neuroscience.

[10]  Feng Yu,et al.  Mushroom bodies modulate salience‐based selective fixation behavior in Drosophila , 2008, The European journal of neuroscience.

[11]  Mark A Frye,et al.  Multisensory systems integration for high-performance motor control in flies , 2010, Current Opinion in Neurobiology.

[12]  J. P. Lindemann,et al.  Function of a Fly Motion-Sensitive Neuron Matches Eye Movements during Free Flight , 2005, PLoS biology.

[13]  Mark A. Frye,et al.  Crossmodal Visual Input for Odor Tracking during Fly Flight , 2008, Current Biology.

[14]  Mark A Frye,et al.  Dynamics of optomotor responses in Drosophila to perturbations in optic flow , 2010, Journal of Experimental Biology.

[15]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[16]  A Prokop,et al.  Normal function of the mushroom body defect gene of Drosophila is required for the regulation of the number and proliferation of neuroblasts. , 1994, Developmental biology.

[17]  Dario L. Ringach,et al.  Reverse correlation in neurophysiology , 2004, Cogn. Sci..

[18]  Michael H Dickinson,et al.  Spatial organization of visuomotor reflexes in Drosophila , 2004, Journal of Experimental Biology.

[19]  Mark A. Willis,et al.  Pheromone-modulated optomotor response in male gypsy moths, Lymantria dispar L.: Directionally selective visual interneurons in the ventral nerve cord , 1990, Journal of Comparative Physiology A.

[20]  Dawnis M. Chow,et al.  The neuro-ecology of resource localization in Drosophila: Behavioral components of perception and search , 2009, Fly.

[21]  Michael H Dickinson,et al.  Odor localization requires visual feedback during free flight in Drosophila melanogaster , 2003, Journal of Experimental Biology.

[22]  A. Borst,et al.  Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions , 2003, Journal of Comparative Physiology A.

[23]  Ronald L. Davis,et al.  Traces of Drosophila Memory , 2011, Neuron.

[24]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[25]  Alexander Y Katsov,et al.  Motion Processing Streams in Drosophila Are Behaviorally Specialized , 2008, Neuron.

[26]  M Egelhaaf,et al.  Behavioural state affects motion-sensitive neurones in the fly visual system , 2010, Journal of Experimental Biology.

[27]  T. Holmes,et al.  2 Circuit-breaking and Behavioral Analysis by Molecular Genetic Manipulation of Neural Activity in Drosophila , 2007 .

[28]  A. Borst,et al.  Robust Coding of Ego-Motion in Descending Neurons of the Fly , 2009, The Journal of Neuroscience.

[29]  H. Krapp,et al.  Visuomotor Transformation in the Fly Gaze Stabilization System , 2008, PLoS biology.

[30]  Dawnis M Chow,et al.  Context-dependent olfactory enhancement of optomotor flight control in Drosophila , 2008, Journal of Experimental Biology.

[31]  Li Liu,et al.  Context generalization in Drosophila visual learning requires the mushroom bodies , 1999, Nature.

[32]  A. Borst,et al.  Central gating of fly optomotor response , 2010, Proceedings of the National Academy of Sciences.

[33]  R. Stocker,et al.  Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. , 1997, Journal of neurobiology.

[34]  A Guo,et al.  Choice Behavior of Drosophila Facing Contradictory Visual Cues , 2001, Science.

[35]  L. Luo,et al.  Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. , 1999, Development.

[36]  R. Hengstenberg,et al.  Binocular contributions to optic flow processing in the fly visual system. , 2001, Journal of neurophysiology.

[37]  J. Kretzberg,et al.  Reliability of a Fly Motion-Sensitive Neuron Depends on Stimulus Parameters , 2000, The Journal of Neuroscience.

[38]  Holger G Krapp,et al.  Nonlinear Integration of Visual and Haltere Inputs in Fly Neck Motor Neurons , 2009, The Journal of Neuroscience.

[39]  M. B. Sokolowski,et al.  Mutations in the larval foraging gene affect adult locomotory behavior after feeding in Drosophila melanogaster. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[41]  Michael H Dickinson,et al.  Motor output reflects the linear superposition of visual and olfactory inputs in Drosophila , 2004, Journal of Experimental Biology.

[42]  Yueqing Peng,et al.  Dopamine-Mushroom Body Circuit Regulates Saliency-Based Decision-Making in Drosophila , 2007, Science.

[43]  Y. Hotta,et al.  Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. , 1992, Developmental biology.

[44]  Dawnis M. Chow,et al.  The spatial, temporal and contrast properties of expansion and rotation flight optomotor responses in Drosophila , 2007, Journal of Experimental Biology.

[45]  A. Borst,et al.  Neural Action Fields for Optic Flow Based Navigation: A Simulation Study of the Fly Lobula Plate Network , 2011, PloS one.

[46]  Dario L. Ringach,et al.  Visual stabilization dynamics are enhanced by standing flight velocity , 2010, Biology Letters.

[47]  Yoshinori Aso,et al.  The Mushroom Body of Adult Drosophila Characterized by GAL4 Drivers , 2009, Journal of neurogenetics.

[48]  A. Reynolds,et al.  Free-Flight Odor Tracking in Drosophila Is Consistent with an Optimal Intermittent Scale-Free Search , 2007, PloS one.

[49]  M. Land Visual acuity in insects. , 1997, Annual review of entomology.

[50]  Jing W. Wang,et al.  Select Drosophila glomeruli mediate innate olfactory attraction and aversion , 2009, Nature.

[51]  Liqun Luo,et al.  Target neuron prespecification in the olfactory map of Drosophila , 2001, Nature.

[52]  Kei Ito,et al.  Clonal unit architecture of the adult fly brain. , 2008, Advances in experimental medicine and biology.

[53]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[54]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.