A snapshot survey for gravitational lenses among z ≥ 4.0 quasars. II. Constraints on the 4.0 < z < 5.4 quasar population

We report on i-band snapshot observations of 157 Sloan Digital Sky Survey quasars at 4.0 -3.8 (3 σ), assuming a break in the quasar luminosity function at M ~ -24.5. This constraint is considerably stronger than the limit of β > -4.63 obtained from the absence of lensing in four z > 5.7 quasars. Such constraints are important to our understanding of the true space density of high-redshift quasars and the ionization state of the early universe.

[1]  The shallow slope of the z∼ 6 quasar luminosity function: limits from the lack of multiple-image gravitational lenses , 2003, astro-ph/0308290.

[2]  A. Szalay,et al.  Five High-Redshift Quasars Discovered in Commissioning Imaging Data of the Sloan Digital Sky Survey , 2000, astro-ph/0005247.

[3]  Bruce A. Peterson,et al.  The evolution of optically selected QSOs – II , 1987 .

[4]  R. Nichol,et al.  The Sloan Digital Sky Survey Quasar Catalog. III. Third Data Release , 2005, astro-ph/0503679.

[5]  Neta A. Bahcall,et al.  A Snapshot Survey for Gravitational Lenses among z ≥ 4.0 Quasars. II. Constraints on the 4.0 < z < 5.4 Quasar Population , 2003, astro-ph/0309274.

[6]  Z. Haiman,et al.  Evidence of a Cosmological Strömgren Surface and of Significant Neutral Hydrogen Surrounding the Quasar SDSS J1030+0524 , 2004, astro-ph/0406188.

[7]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[8]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[9]  V. Narayanan,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6 , 2003, astro-ph/0301135.

[10]  J. Gott,et al.  The Statistics of gravitational lenses: The Distributions of image angular separations and lens redshifts , 1984 .

[11]  Z. Haiman,et al.  Quasar Strömgren Spheres Before Cosmological Reionization , 2000, astro-ph/0006376.

[12]  Z. Haiman,et al.  What Is the Highest Plausible Redshift of Luminous Quasars? , 2000, astro-ph/0011529.

[13]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[14]  A. Myers,et al.  The 2dF-SDSS LRG and QSO (2SLAQ) survey: the z < 2.1 quasar luminosity function from 5645 quasars to g=21.85 , 2005, astro-ph/0504300.

[15]  G. Hinshaw,et al.  Gravitational Lensing by Isothermal Spheres with Finite Core Radii: Galaxies and Dark Matter , 1987 .

[16]  Z. Haiman,et al.  Gravitational Lensing Magnification without Multiple Imaging , 2004, astro-ph/0405143.

[17]  Luminosity-dependent Quasar Lifetimes: Reconciling the Optical and X-Ray Quasar Luminosity Functions , 2005, astro-ph/0504253.

[18]  Princeton,et al.  High-redshift quasars found in sloan digital sky survey commissioning data. V. Hobby-Eberly telescope observations , 2000, astro-ph/0012083.

[19]  Robert H. Becker,et al.  Evolution of the ionizing background and the epoch of reionization from the spectra of z ∼ 6 quasars , 2001 .

[20]  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. II. The Spring Equatorial Stripe , 1999, astro-ph/9909169.

[21]  James E. Gunn,et al.  Spectrscopic CCD Surveys for Quasars at Large Redshift.IV.Evolution of the Luminosity Function from Quasars Detected by Their Lyman-Alpha Emission , 1995 .

[22]  High-redshift quasars found in sloan digital sky survey commissioning data. IV. Luminosity function from the fall equatorial stripe sample , 2000, astro-ph/0008123.

[23]  Fermilab,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. VI. Sloan Digital Sky Survey Spectrograph Observations , 2001, astro-ph/0103228.

[24]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[25]  et al,et al.  High-redshift quasars found in Sloan Digital Sky Survey commissioning data , 1999 .

[26]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[27]  J. Brinkmann,et al.  Determining the Lensing Fraction of SDSS Quasars: Methods and Results from the Early Data Release , 2003, astro-ph/0301464.

[28]  Y. Pei The Luminosity Function of Quasars , 1995 .

[29]  High-redshift quasars found in sloan digital sky survey commissioning data. III. A color-selected sample at i* <20 in the fall equatorial stripe , 2000, astro-ph/0008122.

[30]  A. C. Fabian THE OBSCURED GROWTH OF MASSIVE BLACK HOLES , 1999 .

[31]  C. Alcock Gravitational lenses , 1982, Nature.

[32]  Self-regulated Growth of Supermassive Black Holes in Galaxies as the Origin of the Optical and X-Ray Luminosity Functions of Quasars , 2003, astro-ph/0304156.

[33]  Leonard M. Trawick To J. S. B. , 1968 .

[34]  Oxford,et al.  The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function , 2004, astro-ph/0403040.

[35]  R. Narayan Gravitational lensing and quasar-galaxy correlations , 1989 .

[36]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[37]  E. Turner Quasars and galaxy formation. I - The z greater than 4 objects , 1991 .

[38]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[39]  Constraining the Redshift z=6 Quasar Luminosity Function Using Gravitational Lensing , 2002, astro-ph/0206441.

[40]  The Cosmic Lens All-Sky Survey - II. Gravitational lens candidate selection and follow-up , 2002, astro-ph/0211069.

[41]  Gravitational Lensing of the Sloan Digital Sky Survey High‐Redshift Quasars , 2002, astro-ph/0203119.

[42]  P. Hopkins,et al.  Luminosity-dependent Quasar Lifetimes: A New Interpretation of the Quasar Luminosity Function , 2005, astro-ph/0504252.

[43]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.