Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm

The validity of the synthesis of a globally convergent numerical method with the adaptive FEM technique for a coefficient inverse problem is verified on time-resolved experimental data. The refractive indices, locations and shapes of dielectric abnormalities are accurately imaged.

[1]  Michael V. Klibanov,et al.  Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem , 2010 .

[2]  Michael V. Klibanov,et al.  Carleman estimates for coefficient inverse problems and numerical applications , 2004 .

[3]  Roman Novikov The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator , 1992 .

[4]  Valentin A. Burov,et al.  Reconstruction of Fine-Scale Structure of Acoustical Scatterer on Large-Scale Contrast Background , 2002 .

[5]  Michael V. Klibanov,et al.  Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D , 2010 .

[6]  Ekaterina Iakovleva,et al.  MUSIC-Type Electromagnetic Imaging of a Collection of Small Three-Dimensional Inclusions , 2007, SIAM J. Sci. Comput..

[7]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[8]  V. Romanov On smoothness of a fundamental solution to a second order hyperbolic equation , 2009 .

[9]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[10]  Christian Clason,et al.  An Adaptive Hybrid FEM/FDM Method for an Inverse Scattering Problem in Scanning Acoustic Microscopy , 2006, SIAM J. Sci. Comput..

[11]  Larisa Beilina,et al.  Hybrid FEM/FDM method for an inverse scattering problem , 2003 .

[12]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[13]  Mikhail I. Belishev,et al.  TOPICAL REVIEW: Boundary control in reconstruction of manifolds and metrics (the BC method) , 1997 .

[14]  Michael V. Klibanov,et al.  A Globally Convergent Numerical Method for a Coefficient Inverse Problem , 2008, SIAM J. Sci. Comput..

[15]  J. Coyle Inverse Problems , 2004 .

[16]  Barbara Kaltenbacher,et al.  Efficient computation of the Tikhonov regularization parameter by goal-oriented adaptive discretization , 2008 .

[17]  Masahiro Yamamoto,et al.  Carleman estimates for parabolic equations and applications , 2009 .

[18]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[19]  M. I. Belishev,et al.  Dynamical variant of the BC-method: theory and numerical testing , 1999 .

[20]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[21]  V. Romanov Inverse problems of mathematical physics , 1986 .

[22]  Krister Åhlander,et al.  Efficiency of a hybrid method for the wave equation , 2001 .

[23]  Michael V. Klibanov,et al.  Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem , 2010 .

[24]  A. Tikhonov,et al.  Numerical Methods for the Solution of Ill-Posed Problems , 1995 .

[25]  Michael V. Klibanov,et al.  Inverse Problems and Carleman Estimates , 1992 .

[26]  Samuli Siltanen,et al.  Direct Reconstructions of Conductivities from Boundary Measurements , 2002, SIAM J. Sci. Comput..

[27]  P. Grinevich Scattering transformation at fixed non-zero energy for the two-dimensional Schrödinger operator with potential decaying at infinity , 2000 .

[28]  Michael V. Klibanov,et al.  A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem , 2010 .

[29]  Larisa Beilina,et al.  A POSTERIORI ERROR ESTIMATION IN COMPUTATIONAL INVERSE SCATTERING , 2005 .

[30]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[31]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[32]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[33]  L. Beilina Adaptive finite element method for a coefficient inverse problem for Maxwell's system , 2011 .

[34]  L. Beilina Adaptive hybrid finite element/difference methods: applications to inverse elastic scattering , 2003 .

[35]  Valentin A. Burov,et al.  Solution of the three-dimensional acoustic inverse scattering problem. The modified Novikov algorithm , 2008 .