Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins

[1]  W. Bach,et al.  Insights to magmatic–hydrothermal processes in the Manus back-arc basin as recorded by anhydrite , 2010 .

[2]  E. Reeves Laboratory and field-based investigations of subsurface geochemical processes in seafloor hydrothermal systems , 2010 .

[3]  T. Wagner,et al.  An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 C , 2009 .

[4]  P. Craddock Geochemical tracers of processes affecting the formation of seafloor hydrothermal fluids and deposits in the Manus back-arc basin , 2009 .

[5]  A. Williams-Jones,et al.  A spectrophotometric study of Nd(III), Sm(III) and Er(III) complexation in sulfate-bearing solutions at elevated temperatures , 2008 .

[6]  S. Wood,et al.  A spectrophotometric study of samarium (III) speciation in chloride solutions at elevated temperatures , 2008 .

[7]  S. Scott,et al.  Effects of hydrothermal alteration on Pb in the active PACMANUS hydrothermal field, ODP Leg 193, Manus Basin, Papua New Guinea: A LA-ICP-MS study , 2007 .

[8]  A. Williams-Jones,et al.  An experimental study of the solubility and speciation of neodymium (III) fluoride in F-bearing aqueous solutions , 2007 .

[9]  D. Miller,et al.  Leg 193 Synthesis: Anatomy of an Active Felsic-Hosted Hydrothermal System, Eastern Manus Basin, Papua New Guinea , 2007 .

[10]  G. Wei,et al.  Chlorine in submarine volcanic glasses from the eastern manus basin , 2007 .

[11]  H. Paulick,et al.  Data Report: Petrology and Geochemistry of Fresh, Recent Dacite Lavas at Pual Ridge, Papua New Guinea, from an Active, Felsic-hosted Seafloor Hydrothermal System Leg 193 , 2007 .

[12]  P. Herzig,et al.  Data Report: A Comprehensive Geochemical, Mineralogical, and Isotopic Data Set of Variably Altered Dacitic Volcanic Rocks from the Subsurface of the PACMANUS Hydrothermal Field (ODP Leg 193) , 2007 .

[13]  R. Price,et al.  Water-Rock Reaction, Substrate Composition, Magmatic Degassing, and Mixing as Major Factors Controlling Vent Fluid Compositions in Manus Basin Hydrothermal Systems , 2006 .

[14]  A. Williams-Jones,et al.  A spectrophotometric study of erbium (III) speciation in chloride solutions at elevated temperatures , 2006 .

[15]  A. Williams-Jones,et al.  An experimental study of solubility and speciation of NdF3 in F-bearing aqueous solutions , 2006 .

[16]  H. Paulick,et al.  Phyllosilicate Alteration Mineral Assemblages in the Active Subsea-Floor Pacmanus Hydrothermal System, Papua New Guinea, ODP Leg 193 , 2006 .

[17]  A. Williams-Jones,et al.  A spectrophotometric study of neodymium(III) complexation in sulfate solutions at elevated temperatures , 2006 .

[18]  R. Ash,et al.  An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt , 2005 .

[19]  S. Humphris,et al.  On the Sr isotope and REE compositions of anhydrites from the TAG seafloor hydrothermal system , 2005 .

[20]  W. Seyfried,et al.  REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure , 2005 .

[21]  P. Stoffers,et al.  Mineralogical, geochemical and isotopic characteristics of hydrothermal alteration processes in the active, submarine, felsic-hosted PACMANUS field, Manus Basin, Papua New Guinea , 2004 .

[22]  S. Humphris,et al.  Controls of fluid chemistry and complexation on rare-earth element contents of anhydrite from the Pacmanus subseafloor hydrothermal system, Manus Basin, Papua New Guinea , 2003 .

[23]  A. Boyce,et al.  Contrasting evolution of hydrothermal fluids in the PACMANUS system, Manus Basin: The Sr and S isotope evidence , 2003 .

[24]  J. Schott,et al.  Aluminum speciation in crustal fluids revisited , 2001 .

[25]  T. Urabe,et al.  Acid‐sulphate Type Alteration and Mineralization in the Desmos Caldera, Manus Back‐arc Basin, Papua New Guinea , 2001 .

[26]  D. Nordstrom,et al.  REE speciation in low-temperature acidic waters and the competitive effects of aluminum , 2000 .

[27]  J. Schott,et al.  Iron(III) solubility and speciation in aqueous solutions. experimental study and modelling: part 1. hematite solubility from 60 to 300°C in NaOH–NaCl solutions and thermodynamic properties of Fe(OH)4−(aq) , 1999 .

[28]  J. Cann,et al.  Sea water entrainment and fluid evolution within the TAG hydrothermal mound: evidence from analyses of anhydrite , 1999 .

[29]  J. Charlou,et al.  Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems , 1999 .

[30]  A. Sbrana,et al.  Rare-earth element (REE) behaviour in the alteration facies of the active magmatic–hydrothermal system of Vulcano (Aeolian Islands, Italy) , 1999 .

[31]  P. Dulski,et al.  Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater , 1999 .

[32]  W. Bach,et al.  Rare earth element mobility in the oceanic lower sheeted dyke complex: evidence from geochemical data and leaching experiments , 1998 .

[33]  B. Yardley,et al.  Rare Earth Element Speciation in Geothermal Fluids from Yellowstone National Park, Wyoming, USA , 1998 .

[34]  A. Zotov,et al.  Experimental study of dissociation of HCl from 350 to 500°C and from 500 to 2500 bars: Thermodynamic properties of HCl° (aq) , 1997 .

[35]  E. Shock,et al.  Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. , 1997, Geochimica et cosmochimica acta.

[36]  Everett L. Shock,et al.  Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb , 1997 .

[37]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[38]  J. Auzende,et al.  Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea , 1997 .

[39]  N. Sturchio,et al.  The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA , 1997 .

[40]  S. Wood,et al.  The aqueous geochemistry of the rare earth elements and yttrium: VI. Stability of neodymium chloride complexes from 25 to 300°C , 1996 .

[41]  B. Taylor,et al.  Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin , 1996 .

[42]  Everett L. Shock,et al.  Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures , 1995 .

[43]  H. Elderfield,et al.  Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge , 1995 .

[44]  J. Schott,et al.  Experimental determination of the stability constants of NaSO4− and NaB (OH)40 in hydrothermal solutions using a new high-temperature sodium-selective glass electrode — Implications for boron isotopic fractionation , 1995 .

[45]  M. Hannington,et al.  Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data , 1995 .

[46]  Carla M. Koretsky,et al.  Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures , 1995 .

[47]  J. Edmond,et al.  Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges , 1994 .

[48]  M. Aoki,et al.  Flux of volatiles and ore-forming metals from the magmatic-hydrothermal system of Satsuma Iwojima volcano , 1994 .

[49]  H. Elderfield,et al.  Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge , 1994 .

[50]  C. German,et al.  Rare earth elements in hydrothermal fluids and plume particulates by inductively coupled plasma mass spectrometry , 1994 .

[51]  R. Binns,et al.  Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea , 1993 .

[52]  W. Giggenbach Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin , 1992 .

[53]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[54]  M. Bau Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium , 1991 .

[55]  S. Wood The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure , 1990 .

[56]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species , 1990 .

[57]  A. Michard Rare earth element systematics in hydrothermal fluids , 1989 .

[58]  A. C. Campbell,et al.  Chemistry of hot springs on the Mid-Atlantic Ridge , 1988, Nature.

[59]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C , 1988 .

[60]  E. Honza,et al.  Regional setting and structure of the western Solomon Sea , 1987 .

[61]  F. Albarède,et al.  The REE content of some hydrothermal fluids , 1986 .

[62]  K. Crook,et al.  Hydrothermal chimneys and associated fauna in the Manus Back‐Arc Basin, Papua New Guinea , 1986 .

[63]  Ray F. Weiss,et al.  Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise , 1985 .

[64]  K. V. Damm Chemistry of submarine hydrothermal solutions at 21 degree north, East Pacific Rise and Guaymas Basin, Gulf of California. Doctoral thesis , 1983 .

[65]  F. Albarède,et al.  Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 °N) , 1983, Nature.

[66]  D. D. Wagman,et al.  The NBS tables of chemical thermodynamic properties : selected values for inorganic and C1 and C2 organic substances in SI units , 1982 .

[67]  G. Hanson Rare Earth Elements in Petrogenetic Studies of Igneous Systems , 1980 .

[68]  B. Taylor Bismarck Sea: Evolution of a back-arc basin , 1979 .

[69]  W. Seyfried,et al.  Hydrothermal chemistry of seawater from 25 degrees to 350 degrees C , 1978 .

[70]  J. A. Philpotts,et al.  Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts—II , 1970 .

[71]  H. Helgeson,et al.  Thermodynamics of hydrothermal systems at elevated temperatures and pressures , 1969 .

[72]  P. B. Hostetler,et al.  Some stability relations of alunite , 1969 .

[73]  H. Holland Some applications of thermochemical data to problems of ore deposits; [Part] 2, Mineral assemblages and the composition of ore forming fluids , 1965 .

[74]  J. J. Hemley,et al.  Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism , 1964 .

[75]  S. Scott,et al.  Metalliferous Sediments Associated with Presently Forming Volcanogenic Massive Sulfides: The SuSu Knolls Hydrothermal Field, Eastern Manus Basin, Papua New Guinea , 2007 .

[76]  A. Zotov,et al.  Thermodynamic description of equilibria in mixed fluids (H2O-nonpolar gas) in a wide range of temperatures (25–700°C) and pressures (1–5000 bar) , 2006 .

[77]  J. Sinton,et al.  Magma Genesis and Mantle Heterogeneity in the Manus Back-Arc Basin, Papua New Guinea , 2003 .

[78]  P. Möller The distribution of rare earth elements and yttrium in water-rock interactions: field observations and experiments , 2002 .

[79]  Kenneth W. Doherty,et al.  A new gas-tight isobaric sampler for hydrothermal fluids , 2002 .

[80]  A. Klaus,et al.  Proceedings of the Ocean Drilling Program, Scientific Results , 2001 .

[81]  L. Gardner,et al.  Geochemical Reaction Modeling , 2000 .

[82]  M. Tivey,et al.  10. FLUID MIXING AND ANHYDRITE PRECIPITATION WITHIN THE TAG MOUND 1 , 1998 .

[83]  M. Tivey,et al.  14. TEMPERATURE AND SALINITY OF FLUID INCLUSIONS IN ANHYDRITE AS INDICATORS OF SEAWATER ENTRAINMENT AND HEATING IN THE TAG ACTIVE MOUND 1 , 1998 .

[84]  S. Humphris 12. RARE EARTH ELEMENT COMPOSITION OF ANHYDRITE: IMPLICATIONS FOR DEPOSITION AND MOBILITY WITHIN THE ACTIVE TAG HYDROTHERMAL MOUND 1 , 1998 .

[85]  M. Tivey,et al.  FLUID MIXING AND ANHYDRITE PRECIPITATION WITHIN THE TAG MOUND , 1997 .

[86]  J. Cann,et al.  Preface for Discussion on Mid–Ocean Ridges: dynamics of processes associated with creation of new ocean crust , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[87]  Craig M. Bethke,et al.  Geochemical reaction modeling , 1996 .

[88]  A. C. Campbell,et al.  Time series studies of vent fluids from the TAG and MARK sites (1986, 1990) Mid-Atlantic Ridge: a new solution chemistry model and a mechanism for Cu/Zn zonation in massive sulphide orebodies , 1995, Geological Society, London, Special Publications.

[89]  W. Tufar Modern Hydrothermal Activity, Formation of Complex Massive Sulfide Deposits and Associated Vent Communities in the Manus Back-Arc Basin (Bismarck Sea, Papua New Guinea) , 1990 .

[90]  D. Sverjensky Europium redox equilibria in aqueous solution , 1984 .