Machine Learning and Digital Twin Driven Diagnostics and Prognostics of Light‐Emitting Diodes

[1]  Sheng Liu,et al.  Effects of Moist Environments on LED Module Reliability , 2010, IEEE Transactions on Device and Materials Reliability.

[2]  Alaa Elwany,et al.  Residual Life Predictions in the Absence of Prior Degradation Knowledge , 2009, IEEE Transactions on Reliability.

[3]  Bo Guo,et al.  Real-time Reliability Evaluation with a General Wiener Process-based Degradation Model , 2014, Qual. Reliab. Eng. Int..

[4]  Tzong-Ru Tsai,et al.  Inference From Lumen Degradation Data Under Wiener Diffusion Process , 2012, IEEE Transactions on Reliability.

[5]  Yaguo Lei,et al.  Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods , 2018, Eur. J. Oper. Res..

[6]  David He,et al.  Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis , 2007, Eur. J. Oper. Res..

[7]  W. J. Padgett,et al.  Accelerated Degradation Models for Failure Based on Geometric Brownian Motion and Gamma Processes , 2005, Lifetime data analysis.

[8]  M. Pecht,et al.  Lifetime Estimation of High-Power White LED Using Degradation-Data-Driven Method , 2012, IEEE Transactions on Device and Materials Reliability.

[9]  Bo Sun,et al.  A novel lifetime prediction for integrated LED lamps by electronic-thermal simulation , 2017, Reliab. Eng. Syst. Saf..

[10]  Xiaopeng Jiang,et al.  A Review of Prognostic Techniques for High-Power White LEDs , 2017, IEEE Transactions on Power Electronics.

[11]  Noureddine Zerhouni,et al.  A Data-Driven Failure Prognostics Method Based on Mixture of Gaussians Hidden Markov Models , 2012, IEEE Transactions on Reliability.

[12]  Lei Deng,et al.  Performance characteristics of high-power light-emitting diodes , 2004, SPIE Optics + Photonics.

[13]  M. Meneghini,et al.  A Review on the Physical Mechanisms That Limit the Reliability of GaN-Based LEDs , 2010, IEEE Transactions on Electron Devices.

[14]  Nadarajah Narendran,et al.  Characterizing white LEDs for general illumination applications , 2000, Photonics West - Optoelectronic Materials and Devices.

[15]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[16]  P. J. Griffin,et al.  An Artificial Neural Network Approach to Transformer Fault Diagnosis , 1996, IEEE Power Engineering Review.

[17]  Bo Sun,et al.  Multidimensional Data-Driven Life Prediction Method for White LEDs Based on BP-NN and Improved-Adaboost Algorithm , 2017, IEEE Access.

[18]  Pradeep Lall,et al.  Prediction of L70 Life and Assessment of Color Shift for Solid-State Lighting Using Kalman Filter and Extended Kalman Filter-Based Models , 2015, IEEE Transactions on Device and Materials Reliability.

[19]  Chuong B Do,et al.  What is the expectation maximization algorithm? , 2008, Nature Biotechnology.

[20]  Vikram Garaniya,et al.  Pitting Degradation Modeling of Ocean Steel Structures Using Bayesian Network , 2017 .

[21]  Bo Guo,et al.  A maintenance optimization model for mission-oriented systems based on Wiener degradation , 2013, Reliab. Eng. Syst. Saf..

[22]  Rui Kang,et al.  Benefits and Challenges of System Prognostics , 2012, IEEE Transactions on Reliability.

[23]  S. L. Ho,et al.  Analysis of Indirect Temperature-Rise Tests of Induction Machines Using Time-Stepping Finite Element Method , 2001, IEEE Power Engineering Review.

[24]  P. Baruah,et al.  HMMs for diagnostics and prognostics in machining processes , 2005 .

[25]  Bing Long,et al.  Diagnostics and Prognostics Method for Analog Electronic Circuits , 2013, IEEE Transactions on Industrial Electronics.

[26]  Michael G. Pecht,et al.  Anomaly Detection of Light-Emitting Diodes Using the Similarity-Based Metric Test , 2014, IEEE Transactions on Industrial Informatics.

[27]  Andrew Kusiak,et al.  Monitoring Wind Turbine Vibration Based on SCADA Data , 2012 .

[28]  Haitao Liao,et al.  Reliability inference for field conditions from accelerated degradation testing , 2006 .

[29]  Steven X. Ding,et al.  A Review on Basic Data-Driven Approaches for Industrial Process Monitoring , 2014, IEEE Transactions on Industrial Electronics.

[30]  Gordon Cheng,et al.  Event-based signaling for large-scale artificial robotic skin - realization and performance evaluation , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[31]  Lianqiao Yang,et al.  Electrical, optical and thermal degradation of high power GaN/InGaN light-emitting diodes , 2008 .

[32]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[33]  Chang Liu,et al.  Clustering diagnosis of rolling element bearing fault based on integrated Autoregressive/Autoregressive Conditional Heteroscedasticity model , 2012 .

[34]  Michael G. Pecht,et al.  A fusion prognostics method for remaining useful life prediction of electronic products , 2009, 2009 IEEE International Conference on Automation Science and Engineering.

[35]  Enrico A. Colosimo,et al.  Comparison of Methods to Estimate the Time‐to‐failure Distribution in Degradation Tests , 2004 .

[36]  John D. Bullough,et al.  What is Useful Life for White Light LEDs , 2001 .

[37]  R. Dupuis,et al.  History, Development, and Applications of High-Brightness Visible Light-Emitting Diodes , 2008, Journal of Lightwave Technology.

[38]  D. An,et al.  Physics-Based Prognostics , 2017 .

[39]  Jen Tang,et al.  Determination of burn‐in parameters and residual life for highly reliable products , 2003 .

[40]  Donghua Zhou,et al.  Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process , 2012, IEEE Transactions on Reliability.

[41]  G. Meng,et al.  A generalized similarity measure for similarity-based residual life prediction , 2011 .

[42]  Ling L. Li,et al.  Residual Useful Life Estimation by a Data-Driven Similarity-Based Approach , 2017, Qual. Reliab. Eng. Int..

[43]  Lin Ma,et al.  Prognostic modelling options for remaining useful life estimation by industry , 2011 .

[44]  Ping Zhang,et al.  Step-stress accelerated testing of high-power LED lamps based on subsystem isolation method , 2015, Microelectron. Reliab..

[45]  W. D. van Driel,et al.  An Introduction to System Reliability for Solid-State Lighting , 2013 .

[46]  Francisco G. Montoya,et al.  Indoor lighting techniques: An overview of evolution and new trends for energy saving , 2017 .

[47]  Michael G. Pecht,et al.  Prognostics of lumen maintenance for High power white light emitting diodes using a nonlinear filter-based approach , 2014, Reliab. Eng. Syst. Saf..

[48]  George J. Vachtsevanos,et al.  A particle-filtering approach for on-line fault diagnosis and failure prognosis , 2009 .

[49]  Michael G. Pecht,et al.  Predicting long-term lumen maintenance life of LED light sources using a particle filter-based prognostic approach , 2015, Expert Syst. Appl..

[50]  Donghua Zhou,et al.  A Generalized Result for Degradation Model-Based Reliability Estimation , 2014, IEEE Trans Autom. Sci. Eng..

[51]  Roland Haitz,et al.  Solid‐state lighting: ‘The case’ 10 years after and future prospects , 2011 .

[52]  Lianqiao Yang,et al.  Mechanism and thermal effect of delamination in light-emitting diode packages , 2005, Microelectron. J..

[53]  H. B. Fan,et al.  An effective prediction method for LED lumen maintenance , 2012, 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging.

[54]  C. Joseph Lu,et al.  Using Degradation Measures to Estimate a Time-to-Failure Distribution , 1993 .

[55]  Z. Deng,et al.  A Critical Review of Machine Learning of Energy Materials , 2020, Advanced Energy Materials.

[56]  Weiwen Peng,et al.  Investigation of Bayesian network for reliability analysis and fault diagnosis of complex systems with real case applications , 2017 .

[57]  M. Meneghini,et al.  Degradation Mechanisms of High-Power LEDs for Lighting Applications: An Overview , 2014, IEEE Transactions on Industry Applications.

[58]  Myeongsu Kang,et al.  Machine Learning: Fundamentals , 2018 .

[59]  Jan Lundberg,et al.  Remaining useful life estimation: review , 2014, Int. J. Syst. Assur. Eng. Manag..

[60]  Bongtae Han,et al.  $In\ Situ$ Failure Detection of Electronic Control Units Using Piezoresistive Stress Sensor , 2018, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[61]  Savitha G Kini,et al.  Prognostic algorithms for L70 life prediction of solid state lighting , 2016 .

[62]  B.H.M. Sadeghi,et al.  A BP-neural network predictor model for plastic injection molding process , 2000 .

[63]  G A Whitmore,et al.  Modelling Accelerated Degradation Data Using Wiener Diffusion With A Time Scale Transformation , 1997, Lifetime data analysis.

[64]  Michael Pecht,et al.  Failure Mechanisms and Reliability Issues in LEDs , 2013 .

[65]  Tommy W. S. Chow,et al.  Approach to Fault Identification for Electronic Products Using Mahalanobis Distance , 2010, IEEE Transactions on Instrumentation and Measurement.

[66]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[67]  Waltraud Kahle,et al.  The Wiener Process as a Degradation Model: Modeling and Parameter Estimation , 2010 .

[68]  Narayanaswamy Balakrishnan,et al.  Mis-specification analyses of gamma and Wiener degradation processes , 2011 .

[69]  Enrico Zio,et al.  FAILURE PROGNOSTICS BY A DATA-DRIVEN SIMILARITY-BASED APPROACH , 2013 .

[70]  Vikrant More,et al.  A Solder Joint Reliability Model for the Philips Lumileds LUXEON Rebel LED Carrier Using Physics of Failure Methodology , 2013 .

[71]  Gang Niu,et al.  Health monitoring of electronic products based on Mahalanobis distance and Weibull decision metrics , 2011, Microelectron. Reliab..

[72]  F. Gu,et al.  Fault detection and diagnosis using Principal Component Analysis of vibration data from a reciprocating compressor , 2012, Proceedings of 2012 UKACC International Conference on Control.

[73]  Bo Sun,et al.  A Gamma Process-Based Prognostics Method for CCT Shift of High-Power White LEDs , 2018, IEEE Transactions on Electron Devices.

[74]  Savitha G Kini,et al.  LED life prediction based on lumen depreciation and colour shift , 2017 .

[75]  Dawn An,et al.  Practical options for selecting data-driven or physics-based prognostics algorithms with reviews , 2015, Reliab. Eng. Syst. Saf..

[76]  Wenbin Wang,et al.  A model to predict the residual life of aircraft engines based upon oil analysis data , 2005 .

[77]  Andrew Y. C. Nee,et al.  Digital twin driven prognostics and health management for complex equipment , 2018 .

[78]  Takashi Hiyama,et al.  Predicting remaining useful life of rotating machinery based artificial neural network , 2010, Comput. Math. Appl..

[79]  M. B. Carey,et al.  Reliability assessment based on accelerated degradation: a case study , 1991 .

[80]  Xiaoyang Li,et al.  A Bayesian least-squares support vector machine method for predicting the remaining useful life of a microwave component , 2017 .

[81]  John F. Van Derlofske,et al.  White LED sources for vehicle forward lighting , 2002, SPIE Optics + Photonics.

[82]  Takeshi Yanagisawa,et al.  Estimation of the degradation of InGaN/AlGaN blue light-emitting diodes , 1997 .

[83]  Carey Bunks,et al.  CONDITION-BASED MAINTENANCE OF MACHINES USING HIDDEN MARKOV MODELS , 2000 .

[84]  Liang Guo,et al.  A recurrent neural network based health indicator for remaining useful life prediction of bearings , 2017, Neurocomputing.

[85]  K. Doksum,et al.  Models for variable-stress accelerated life testing experiments based on Wiener processes and the inverse Gaussian distribution , 1992 .

[86]  Naomi S. Altman,et al.  Points of Significance: Principal component analysis , 2017, Nature Methods.

[87]  M. Pecht,et al.  Physics-of-Failure-Based Prognostics and Health Management for High-Power White Light-Emitting Diode Lighting , 2011, IEEE Transactions on Device and Materials Reliability.

[88]  Rong Li,et al.  Residual-life distributions from component degradation signals: A Bayesian approach , 2005 .

[89]  Pradeep Lall,et al.  Assessment of Lumen Degradation and Remaining Life of Light-Emitting Diodes Using Physics-Based Indicators and Particle Filter , 2015 .

[90]  Rong Pan,et al.  A hierarchical modeling approach to accelerated degradation testing data analysis: A case study , 2011, Qual. Reliab. Eng. Int..

[91]  G. Zhang,et al.  Multi-physics modeling of LED-based luminaires under temperature and humidity environment , 2012, 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging.

[92]  Michael G. Pecht,et al.  A prognostics and health management roadmap for information and electronics-rich systems , 2010, Microelectron. Reliab..

[93]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[94]  Jean Paul Freyssinier,et al.  Solid-state lighting: failure analysis of white LEDs , 2004 .

[95]  Peter W. Tse,et al.  Anomaly Detection Through a Bayesian Support Vector Machine , 2010, IEEE Transactions on Reliability.

[96]  Azad M. Madni,et al.  Leveraging Digital Twin Technology in Model-Based Systems Engineering , 2019, Syst..

[97]  X. P. Li,et al.  An approach of LED lamp system lifetime prediction , 2011, 2011 IEEE International Conference on Quality and Reliability.

[98]  Myeongsu Kang,et al.  Prognostics-Based LED Qualification Using Similarity-Based Statistical Measure With RVM Regression Model , 2017, IEEE Transactions on Industrial Electronics.

[99]  Xuejun Fan,et al.  Solid State Lighting Reliability , 2013 .

[100]  M. Vanzi,et al.  Accelerated Life Test of High Brightness Light Emitting Diodes , 2008, IEEE Transactions on Device and Materials Reliability.

[101]  Bongtae Han,et al.  Hierarchical Life Prediction Model for Actively Cooled LED-Based Luminaire , 2010, IEEE Transactions on Components and Packaging Technologies.

[102]  Luigi Portinale,et al.  Bayesian networks in reliability , 2007, Reliab. Eng. Syst. Saf..

[103]  N. Vichare,et al.  Prognostics Implementation Methods for Electronics , 2007, 2007 Annual Reliability and Maintainability Symposium.

[104]  Chien-Ping Wang,et al.  Failure and degradation mechanisms of high-power white light emitting diodes , 2010, Microelectron. Reliab..

[105]  M. Meneghini,et al.  Recent results on the degradation of white LEDs for lighting , 2010 .

[106]  Jao-Hwa Kuang,et al.  Failure Mechanisms Associated With Lens Shape of High-Power LED Modules in Aging Test , 2008, IEEE Transactions on Electron Devices.

[107]  Michael Pecht,et al.  Prognostics of Chromaticity State for Phosphor-Converted White Light Emitting Diodes Using an Unscented Kalman Filter Approach , 2014, IEEE Transactions on Device and Materials Reliability.

[108]  Sheng-Tsaing Tseng,et al.  Mis-Specification Analysis of Linear Degradation Models , 2009, IEEE Transactions on Reliability.

[109]  Xiao Wang,et al.  Wiener processes with random effects for degradation data , 2010, J. Multivar. Anal..

[110]  Ming Dong,et al.  Equipment PHM using non-stationary segmental hidden semi-Markov model , 2011 .

[111]  Michael Pecht,et al.  Physics-of-failure-based prognostics for electronic products , 2009 .

[112]  Sheng-Tsaing Tseng,et al.  Optimal design for step-stress accelerated degradation tests , 2006, IEEE Trans. Reliab..

[113]  M. Pecht,et al.  Physics-of-failure: an approach to reliable product development , 1995, IEEE 1995 International Integrated Reliability Workshop. Final Report.

[114]  Xiaopeng Jiang,et al.  Prognostics-based qualification of high-power white LEDs using Lévy process approach , 2017 .

[115]  Yu Liu,et al.  Life prediction for white OLED based on LSM under lognormal distribution , 2012 .

[116]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[117]  M. Meneghini,et al.  A Review on the Reliability of GaN-Based LEDs , 2008, IEEE Transactions on Device and Materials Reliability.

[118]  Steven M. Cox,et al.  Stochastic models for degradation-based reliability , 2005 .

[119]  Jong Kyu Kim,et al.  Solid-State Light Sources Getting Smart , 2005, Science.

[120]  Joseph Mathew,et al.  A review on prognostic techniques for non-stationary and non-linear rotating systems , 2015 .

[121]  Stoyan Stoyanov,et al.  Prognostics and Health Monitoring of High Power LED , 2012, Micromachines.

[122]  M. Crowder,et al.  Covariates and Random Effects in a Gamma Process Model with Application to Degradation and Failure , 2004, Lifetime data analysis.

[123]  Xiupeng Li,et al.  Degradation modeling of mid-power white-light LEDs by using Wiener process. , 2015, Optics express.

[124]  Xiaohong Wang,et al.  Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information , 2017, Sensors.

[125]  J. Yang,et al.  Defect-related degradation of Deep-UV-LEDs , 2010, Microelectron. Reliab..

[126]  Bo Sun,et al.  Lumen Degradation Lifetime Prediction for High-Power White LEDs Based on the Gamma Process Model , 2019, IEEE Photonics Journal.

[127]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[128]  Cher Ming Tan,et al.  Early degradation of high power packaged LEDs under humid conditions and its recovery - Myth of reliability rejuvenation , 2016, Microelectron. Reliab..

[129]  C. P. Kurian,et al.  Thermal characterization of multicolor LED luminaire , 2017, Microelectron. Reliab..

[130]  Jeff A. Bilmes,et al.  What HMMs Can Do , 2006, IEICE Trans. Inf. Syst..

[131]  P. V. Varde,et al.  Light emitting diodes reliability review , 2012, Microelectron. Reliab..

[132]  Tao Yuan,et al.  Bayesian degradation modeling for reliability prediction of organic light-emitting diodes , 2016, J. Comput. Sci..

[133]  N. Holonyak,et al.  COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS , 1962 .

[134]  Zhengqiang Pan,et al.  Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes , 2011, Reliab. Eng. Syst. Saf..

[135]  Myeongsu Kang,et al.  Machine Learning: Anomaly Detection , 2018 .

[136]  Jiajie Fan,et al.  Degradation of Microcellular PET reflective materials used in LED-based products , 2015 .

[137]  Marta A. Freitas,et al.  Reliability assessment using degradation models: bayesian and classical approaches , 2010 .

[138]  Takeshi Yanagisawa,et al.  Long-term accelerated current operation of white light-emitting diodes , 2005 .

[139]  Wenbin Wang,et al.  A model for residual life prediction based on Brownian motion with an adaptive drift , 2011, Microelectron. Reliab..

[140]  Kwok-Leung Tsui,et al.  Degradation Data Analysis Using Wiener Processes With Measurement Errors , 2013, IEEE Transactions on Reliability.

[141]  G A Whitmore,et al.  Estimating degradation by a wiener diffusion process subject to measurement error , 1995, Lifetime data analysis.

[142]  Donghua Zhou,et al.  Remaining useful life estimation - A review on the statistical data driven approaches , 2011, Eur. J. Oper. Res..

[143]  Pham Luu Trung Duong,et al.  Application of expectation maximization and Kalman smoothing for prognosis of lumen maintenance life for light emitting diodes , 2018, Microelectron. Reliab..

[144]  David,et al.  Abrupt fault remaining useful life estimation using measurements from a reciprocating compressor valve failure , 2019, Mechanical Systems and Signal Processing.

[145]  Donghua Zhou,et al.  A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution , 2013, Eur. J. Oper. Res..

[146]  Jan M. van Noortwijk,et al.  A survey of the application of gamma processes in maintenance , 2009, Reliab. Eng. Syst. Saf..

[147]  Wenbin Wang,et al.  A return on investment analysis of applying health monitoring to LED lighting systems , 2015, Microelectron. Reliab..

[148]  Gaudenzio Meneghesso,et al.  Failures of LEDs in Real-World Applications: A Review , 2018, IEEE Transactions on Device and Materials Reliability.

[149]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[150]  H. W. Lim,et al.  Life time comparison of LED package and the self-ballasted LED lamps by simple linear regression analysis , 2015, Microelectron. Reliab..